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Abstract

An Autonomous Data Platform integrates data engineering, MLOps, and Al services into a single platform. The
convergence is important because many business problems that require data analysis, predictive modeling, and monitoring
can be realized as autonomous data pipelines. Organizations are struggling to establish best practices and standards for
autonomous data platforms. The research considers the data management principles, conceptual models, and architectural
patterns of data platforms from a product perspective. Emphasis is placed on the convergence with MLOps and cloud
engineering. The use cases and evaluations of autonomous data platforms enabled by the convergence are examined.

With the proliferation of data and new generation artificial intelligence (Al) technologies, organizations are exploring new
roles, processes, and technology products to groom the data and build data models for predictive analytics and forecasting.
The autonomy of data pipelines is becoming popular as organizations increasingly require learners and predictors to be
created, deployed, and monitored automatically. The concept of an Autonomous Data Platform describes a converged
product combining data engineering, MLOps, and Al services within an organization. Autonomous Data Platforms can be
realized and realized as intelligent data pipelines that groom data and support organizations in various business functions
such as customer relationship management and risk analytics systems.

Keywords: Autonomous Data Platforms, Intelligent Data Pipelines, Data Engineering Convergence, MLOps Integration,
Al Service Platforms, Autonomous Analytics, Predictive Modeling Pipelines, Automated Model Deployment, Continuous
Model Monitoring, Cloud-Native Data Platforms, Product-Oriented Data Architecture, Data Management Principles,
Architectural Patterns for Data Platforms, Self-Managing Data Pipelines, AutoML and Forecasting Systems, Enterprise Al
Enablement, CRM Analytics Automation, Risk Analytics Platforms, End-to-End ML Lifecycle, Autonomous Learning
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1. Introduction

Autonomous Data Platforms: Converging Al, MLOps, and Cloud Engineering for Digital Transformation. Over
the last decade, cloud-computing platforms have disrupted enterprise IT. Cloud engineering, combined with customer-
driven development, enables rapid experimentation and industrialization of machine-learning (ML) solutions, resulting in
an MLOps ecosystem. Nevertheless, the full power of cloud-engineering capabilities and Al, which incorporates full
autonomy, has yet to be harnessed.

Autonomous-data-platform architecture achieves this goal by converging three orthogonal domains: AI, MLOps,
and cloud engineering. By enabling intelligent data-management pipelines on the platform, the architecture makes data
ingestion and integration proactive, enabling self-service analytics for business users. At the same time, productionizing
data-science models and monitoring model performance become automatic. These mechanisms enhance failure prevention,
minimize total cost, and increase an organization’s readiness to act on changing business scenarios. A set of reference
architectures illustrates how organizations in diverse domains are operationalizing various elements of the architecture.

1.1. Overview and Objectives of Autonomous Data Platforms

As digital transformation accelerates, organizations seek to derive greater value from data-driven insights faster
than before. Autonomous data platforms (ADPs) have emerged as an architectural paradigm to meet this challenge. With
a declarative, domain-centric approach that integrates cloud engineering, artificial intelligence (AI), machine learning
(ML), and ML operations (MLOps), ADPs establish a data infrastructure for intelligent automation. By connecting data
sources, preparing and optimizing data for ML consumption, and automating deployment and monitoring, ADPs create
intelligent data-pipeline constructs that provide timely, trustworthy, and secure models.
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Fig 1: Autonomous Data Platforms (ADPs): A Declarative Architectural Paradigm for Scalable Intelligent Data
Pipelines and MLOps Automation

Evaluation criteria for ADPs reflect the breadth of enterprise challenges they address. Performance and reliability
metrics assess the speed and resilience of key deployment pipelines, while data-pipeline costs measure the overall expense
of hosting and servicing all production pipelines. Intelligent data pipelines, representing the convergence of MLOps, cloud
engineering, and Al, provide a narrower focus for exploratory case studies. Aligning Al’s exponential capabilities with the
costs of training and maintaining ML models, intelligent data pipelines automate deployment, monitoring, and performance
auditing. Subsonic testbeds for enterprise architects reflect ADPs’ declarative approach to managing data and connectivity
in data-integration pipelines.

2. Conceptual Foundations of Autonomous Data Platforms

To facilitate exploration of the capabilities of data automation, a short discussion of the key components of
Autonomous Data Platforms is warranted. Several areas are examined in detail, including data management principles, the
Al components required, and the associated capabilities needed to deliver intelligent data pipeline automation. The
discussion draws on insights from numerous industry case studies, especially those profiled in the IBM CDO Insights
report series.

Processing latency by pipeline stage (illustrative)
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Fig 2: Conceptual Foundations of Autonomous Data Platforms: Data Management Principles, Al Components, and
Intelligent Pipeline Capabilities

Equation 1) Performance equations (latency, throughput, response time)
1.1 Processing latency (single request)

Let a request (or batch) enter a pipeline stage at time t;, and exit at time .
Step-by-step

1. Identify the start timestamp: t;,
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2. Identify the end timestamp: ¢,
3. Subtract:
L = tout - tin
If you observe n requests with latencies L4, L,, ..., L,,, then:

Mean latency

n
DL

Percentile latency (e.g., p95)
Sort latencies ascending to get Ly < < Leyy.
The p95 index is k = [0.95n].

o~
Il
S|

Lpos = Lao
1.2 Throughput
Throughput is “volume processed per unit time”.
Let N = number of requests (or records) completed during a measurement window of duration T seconds.
Step-by-step
1. Count completed units: N
2. Measure elapsed wall time: T

3. Divide:

N
X = T (requests/sec or records/sec)

1.3 Response time vs processing latency (practical decomposition)
For retrieval calls, “response time” typically includes queueing/network overhead plus service time.
Let

e W = waiting/queue/network time

e S =service time (compute + 1O in system)
Then:

R=W+S§

2.1 Data Management Principles

Various key data management principles serve as foundational concepts in the design and delivery of Autonomous
Data Platforms. The intelligent automation of data pipelines requires three primary principles: Data as Code, Data and Al
Quality at Source, and Trust by Design. Al-assisted Data and Al Quality at Source focus on quality remediation in data
pipelines incorporating data validation checks and balances. Data as Code ensures a seamless application of infrastructure-
as-code principles to the data engineering and data science space. Data and Al Quality at Source and Trust by Design
collectively mandate the application of checks and validations to guarantee high-quality datasets and models, as Bruin et
al. point out.

The application of privacy-preserving Al methods across the data and Al pipeline, such as encrypted computation
and differential privacy, are important enablers of the Trust by Design principle. Consequently, Al-assisted Data and Al
Quality at Source and Trust-by-Design are often employed in combination, alongside the Data as Code principle, to
automate the majority of the data and Al pipeline lifecycle, including monitoring and triggering.
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Table 1. Latency and Throughput Comparison Between Traditional Pipelines and Autonomous Data
Platform (ADP)

Pipeline stage | Latency (ms) - Traditional | Latency (ms) - ADP | Throughput (req/s) - Traditional
Ingestion 850 520 180
Integration 1200 760 140
Transformation | 1600 980 110
Serving 500 340 260

2.1. Data Management Principles

The architecture incorporates multiple data ingestion and integration subsystems capable of capturing a wide
variety of data sources, both structured and unstructured. These components offer services for data discovery and profiling
and are responsible for the automated collection, cleansing, and cataloguing of such data via intelligent data pipelines,
using Al-based approaches to define the needed transformations and enrichment for structured data, and providing
interview-like natural-language question-and-answer interfaces to unstructured documents and images. Quality checks
based on data characteristics, semantics, and business rules are automatically assigned to the data using Al, and monitored
through an MLOps-like framework. As a result, clean quality data are readily available for core data warehouses and/or
lakezones organized around business domains and lines of processes.

The proposed architecture also incorporates specialized MLOps components for data-driven decision-making, e.g.
risk predictions in financial services or diagnosis and treatment recommendations in the healthcare sector. Tracking of
business quality is context-dependent and is performed by dedicated information systems built on top of the Clean Data
and MLOps Layers. Longitudinal analysis of quality can be complemented by development indicators that anticipate
business outcomes, such as an increasing probability of loan defaults. In the same fashion as the data pipelines, the deploy-
test-rerun cycles of machine-learning models are also wrapped with a model-monitoring service set in two levels: a first-
level trigger detects changes in the input data, while a second-level trigger computes model-performance metrics.

2.2. Al Components and Capabilities

Autonomous Data Platforms enhance conventional data Management, support Digital Transformation initiatives,
and accelerate advanced Al adoption. Principal operational objectives are to automate end-to-end autonomous data
management processes, capitalizing on proprietary enterprise data offering significant monetization potential and providing
a unified single point of inference for Business Analytics. The migration of Al capabilities from Business Intelligence-
centric descriptive and diagnostic to predictive, prescriptive, and ultimately autonomous decision-making has generated
information-as-a-product demands. The autonomy of Cloud Engineering systems has focused attention on establishing
demand- or supply-driven intelligent data pipelines capable of ingesting data from enterprise or external sources at Scale
and Frequency, integrating, transforming, and curating it for prepared Business Analytics Consumption. Convergence
mechanisms between proprietary enterprise data management and market-led AI components establish Data Wrangler and
MLOps Processes to deliver intelligent Data Pipelines.

The focus on supply-driven intelligent data pipelines has mainly centered on the ingestion, integration, and
transformation stages within an end-to-end data management process. Such pipelines automate the modeling, generation,
and deployment of data products supporting model inference for predictive and prescriptive ML use cases. A foundation
of Quality and Reliable Data-as-a-Service is a prerequisite; accordingly, a MLOps Process manages the Design,
Implementation, and Deployment of Logical Data Models and Services controlling Model Inference Data Products within
an autonomous data engineering environment. The enterprise Cloud Engineering Systems automate the deployment of
predictive Maintenance Models, production-ready MI and AI Models and Services at scale, monitored and governed by a
suitable model factory environment.

3. Architectural Paradigms and Reference Architectures

Reference architectures for data acquisition and ingestion, big data storage and management, and data warehouses
and lakehouses consider the different architectural paradigms that support the construction of Autonomous Data Platforms.
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Data typically enter these platforms through Intelligent Data Pipelines, which automatically adapt their behavior based on
underlying data and ongoing operational processes. Such pipelines are in turn aligned with new generations of data
management systems comprising not only cloud-based data warchouses and lakehouses but also management, processing,
and analytical frameworks specifically conceived for big data domains.

The Data Ingestion and Integration Layer plays a critical role in the successful deployment of Autonomous-Data-
Management Platforms. Consistent support for DataOps principles helps ensure that data pipelines adjust their behavior in
a timely manner according to Data-Management-and-Analytics-as-a-Service strategy and at the same time in support of
MLOps principles aligned with the data-prepare, data-build, and data-serve stages of MLOps and Machine Learning
Engineering lifecycles. In turn, Intelligent Data Pipelines DataOps-aware by design help enforce a fit-for-use approach to
data ingestion into big Data Management Constructs or Data Warehouses and Lakehouses, enabling correct preparation of
data assets for use in advanced analytics (e.g., predictive risk analytics, machine learning, graphical-model-based).

3.1. Data Ingestion and Integration Layer

The Data Ingestion and Integration layer facilitates data collection and integration from a wide variety of sources.
While traditional platforms perform these functions semi-automatically, autonomous platforms deploy mechanisms that
enable real-time operation and expose Al-generated data quality and reliability scores as metadata. Intelligent data pipelines
that monitor data quality during ingestion and data lineage for tracking data movement and change over time appear
essential to a truly operational Autonomous Data Platform.

The Autonomous Data Platform is often seen as an extension of traditional MLOps systems that automatically
manage the data life cycle for machine-learning model building and performance on production data. However, Kallio and
Saitta propose a broader viewpoint that embraces data engineering and Cloud Engineering for overall industrial production
and enterprise decision-making. Convergence happens in two ways. First, the ingredients of the ingested data engineering
can come from anywhere and in any form—structured, unstructured, or semi-structured—as long as data-processing quality
can be ensured through data quality and reliability scoring. Second, once ingested, data enters data stores prepared for safe
storage, backed up for disaster recovery, or governed for regulatory compliance.
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Fig 3: Autonomous Data Platforms: Converging MLOps, Cloud Engineering, and AI-Driven Governance for
Enterprise Decision-Making

3.2. Storage and Data Warehouse/Lakehouse Constructs

Autonomous Data Platforms combine the enabling Al principle of data consumption on demand with a Cloud
Engineering data-as-a-service (DaaS) architecture layer by exposing data through intelligent data pipelines. These integrate
data ingestion, storage, and transformation, thus establishing an end-to-end data pipeline—from source to analytical
consumption. Data Ingestion and Integration layers automatically clean, harmonize, aggregate, and exploit this
heterogeneous data. The output is enriched, thoroughly documented, and served in a self-service manner across data
landscapes and analytical use cases.
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The demand for self-service access is critical to business success. Yet without proper controls, business users can
consume any data, possibly leading to major reputational issues due to incorrect conclusions drawn from integrating
different datasets. Such a self-service requirement makes it challenging to guarantee the correctness of the analytical results.
A way to reconcile this conflict is to enable companies to consume data on demand and integrate the consumption into the
data life cycle itself through automated data lineage, which allows trustworthy results to be achieved.

Table 2. System Reliability, Availability, and Error Rate Comparison

System Reliability (success fraction) | Availability (uptime fraction) | Error rate (1 - reliability)
Traditional | 0.965 0.985 0.03500000000000003
ADP 0.992 0.998 0.008000000000000007

4. Convergence Mechanisms: AI, MLOps, and Cloud Engineering in Practice

Intelligent data pipelines as autonomous learning systems reduce human involvement in data preparation and
machine learning, managing the traditional 90% of execution time devoted to these tasks. The operations, system, and
mechanisms of these pipelines are studied, highlighting the challenges and opportunities presented by the ubiquitous
availability of data. Each step of the pipeline becomes autonomous, resulting in reliability and performance gains for
different conditions. Recently, increasing interest has been directed at automatically deploying machine learning models
in production and monitoring them to detect performance degradation. The monitoring systems integrate with MLOps,
allowing models to be automatically refreshed and re-validated without previously requiring expert involvement.

The convergence of Al, cloud computing, edge and fog computing, cybersecurity, protocol standards, and other
technologies requires multiple technical domains and skill sets for research and evolution in practice. The definition of
Autonomous Data Platforms connects these technologies and components by focusing on data as the point of convergence.
The union of ML with Data and Cloud Engineering converging with MLOps completes the loop. Al also requires skilled
Data Engineering. Data Pipelines and Data Strategy Automation are paramount challenges to reduce support costs, increase
the breadth of support, and allow the automation of the usually manually intensive aspects of most data projects and
pipelines.

Throughput by pipeline stage (illustrative)
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Fig 4: System Reliability Model in Autonomous Data Platforms: Relationships Among Reliability, Error Rate,
Availability, and Resilience

Equation 2) Reliability, error rate, availability, resilience
2.1 Reliability (request success fraction)
Let:

e N, =number of successful requests in a period

e N, =total requests in the same period
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Step-by-step
4. Count successes: Ny

5. Count total: Ny

6. Divide:
e . Nok
Reliability (Rel) =
tot
2.2 Error rate
Let Nerr = Ntot - Nok'
ErrorRate = — = 1 — Rel

tot

2.3 Availability (uptime fraction)
Over an observation window of length T (minutes/hours), let downtime be D.
Step-by-step

7. Measure total time T

8. Measure downtime D

9. Compute uptime U =T — D

10. Divide:
a2 _r-0_,_ Db
T T T
A common SRE form uses MTBF/MTTR:
Let:
e  MTBF = mean time between failures
e MTTR = mean time to recover
MTBF
~ MTBF + MTTR

4.1. Intelligent Data Pipelines

Automation, optimization, and enhanced quality are three important goals of any data platform. Considered in
isolation to other workflow elements, data ingestion, transformation, and integration should be automated and optimized
to minimize execution time and maximize the volume of data processed. Quality enhancement is ideally achieved through
realization of a data-warehouse construct that performs data cleaning, transformation, and enrichment, thereby ingesting
data that is suitably fit for consumption by downstream processes. These objectives provide a basis for a separate focus on
Intelligent Data Pipelines, where pipelining is treated as the focus of intelligent orchestration.

Taking a broader view, orchestration of the entire workflow—from data ingestion through storage to consumer
consumption of analytics or Al-visible artifacts—can be guided by Al throughout, with the aim of achieving improved
execution time, reliability, and reduced human intervention. Three classes of intelligent orchestration can be identified:

1. **Request-Pipeline Orchestration** — orchestration of all the underlying data pipeline requests that are
executed at different stages to derive the output request.

2. **ML/AI Pipeline Execution** — execution of ML and Al pipelines from requests raised by users or from the
Data Product Catalog.
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3. **Intelligent Data Flow Management** — intelligent management of the data flow in real-time from an origin
to destination by modeling the data flow as a dynamic data graph, with a self-healing capability that utilizes predictive
analysis for proactive decision support.

Aspects of intelligent request-pipeline orchestration consider an autonomous Data Pipeline Catalog that acts as a
repository of data pipeline requests, their metadata information, and Details of the results generated.

The Data Pipeline Catalog acts as a guiding tool to Intelligent Model Calibration, the objective of which is to
identify the best hyperparameters for a data pipeline to improve run-time performance, quality, self-healing ability, and
model maintainability. Intelligent Model Calibration approaches enable reliable execution by addressing wrong
hyperparameter settings and help users by providing better models of higher interest.

4.2. Automated Model Deployment and Monitoring

Continuous monitoring of deployed models is essential to ensure sustained accuracy and reliability. Such
monitoring detects changes in data or distribution patterns, alerting stakeholders to potential model obsolescence. But
incorporating MLOps capabilities for subsequent retraining of models remains the responsibility of data engineers or
researchers, in contrast with other components of AsA is. However, factory-like mass production is possible for simple
models trained on structured tabular data by applying patterns instead of customized designs. Implementing these patterns
allows continuous updates of master models by MLOps group, enabling re-prediction and replacing models that are no
longer valid. Automated production of hop-on-hop-off models based on fresh data or user queries also enhances model
selection and time-to-market, thus offering an inventory of models through self-service provisioning.

Applications in fraud detection cover account takeover, identity theft, and credit card fraud. For credit card
transaction models, data preparation and model training are both complex. Nevertheless, a single stream-based solution
pattern can be applied to end-to-end data preparation, automating the preparation and retraining of data pipelines. An
architecture pattern for operationalization of bank accounts—instantiation, monitoring, and shut down of accounts for
credit risk and fraud detection—is particularly useful in fraud and relationship management. The extensibility and
adaptability of the architecture make it suitable for diverse industries where fast model production in MLOps factory mode
is imperative.

5. Use Case Scenarios and Industry Applications

The application of autonomous data platforms in industry can be illustrated with practical use-case scenarios.
Such platforms correspond to Integration for Decision Making and Decision Making Objectives, and several scenarios are
explored in these contexts. Finance and Healthcare are seminal industry domains that rely on data-driven models for key
decisions and risk management. Consequently, an application of Autonomous Data Platforms in these industry domains
can provide some insights.

An example of a data-driven approach in financial services is a solution developed for the risk analytics group of
a top-tier global bank. Financial institutions must comply with regulatory requirements for capital and liquidity buffers and
are required to produce periodic Internal Capital Adequacy Assessment Process (ICAAP) reports that demonstrate required
stress-testing processes and govern these positions under stressed economy-wide conditions. The projected values of risk
factors and key financial ratios over a severe recession are crucial inputs to running holistic stress scenarios. The
penultimate ICAAP report included a model that produced such projections based on 12 key risk factors and was thus used
to run the stress scenarios. However, the model involved considerable labour and analytical effort to prepare inputs, run
the engine under a set of scenarios, and validate the outputs.

Healthcare and precision medicine benefit from several data sources that are traditionally monitored separately.
Examples of these data sources include Electronic Health Records (EHR), medical images, and genomic data. The
autonomous data platform solution ingests such patient data from different sources (ingestion layer) and integrates it into
a coherent dataset for a single patient (integration layer). A simple and interpretable model predicts cancer risk with the
new dataset (decision-making). Furthermore, the data lineage capabilities that document the provenance of the data and
the inheritance of data product quality support a clinical trial of the model using a new set of clinical data. These trials
ultimately help validate patient and public trust in the model, allowing it to be deployed in the EHR product.
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Table 3. Data Quality KPI Improvements Before and After ADP Automation

KPI Before (semi-automated) | After (ADP w/ automated checks)
Freshness 0.72 0.9

Completeness | 0.81 0.94

Correctness 0.78 0.92

5.1. Financial Services and Risk Analytics

Autonomous Data Platforms are being deployed for Digital Transformation use cases across multiple industries.
A first set of applications has been defined by the convergence of AI, MLOps and Cloud Engineering in the financial
services sector, focusing mainly on improving operational efficiency and predictive capability. The two Use Case scenarios
selected are Intelligent Financial Risk Analytics and MLOps-based Autonomous Risk Model Frameworks.

Financial Services represents a major area for the design of Autonomous Data Platforms, where Al, MLOps and
Cloud Engineering converge towards Digital Transformation driven by business imperatives (Gartner, 2021). During 2020
the industry was put under increasing pressure by COVID-19-related business uncertainties and within the following 10
months was busy battling through fluctuating levels of severity. As market conditions remain volatile, companies strive to
regain control of their destiny by scaling back costs, managing financial risks, complying with regulatory obligations,
optimising their capital, and investing in profitable business growth. Technological developments play an important part
in supporting these imperatives through improved operational efficiency and increased predictive capability.

In the area of operational efficiency, financial institutions continue to automate repetitive processes, using
Business Process Management (BPM) systems and Robotic Process Automation (RPA). However, these initiatives can be
improved further through enhanced usability by business users, higher quality and real-time data, and the discovery of
previously unachievable automation opportunities. These requirements can be addressed by the creation of Intelligent
Financial Risk Analytics, which apply natural-language queries and Al-driven intelligent data pipelines to make data
preparation for risk analysis faster, easier and more efficient.
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Fig 5: Convergence of AI, MLOps, and Cloud Engineering: Architecting Autonomous Data Platforms for Intelligent
Financial Risk Analytics
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5.2. Healthcare and Precision Medicine

The healthcare sector relies on data-driven decision-making processes for improving organizational efficiency
and enhancing patient care. Data platforms play a critical role in analyzing patient records, diagnosing diseases, and
predicting treatment outcomes. With the growing popularity of cloud-based services and information as a service,
infrastructure-as-a-service, and platform-as-a-service offerings for healthcare data analysis become more popular.
Deploying autonomous data platforms in the healthcare domain enhances performance, reduces costs, and improves patient
experience.

Prioritizing patient-centric treatment has led to a shift towards a data-informed approach. Precision medicine uses
data from a variety of sources, including genetic and genomic factors, to characterize disease risk and treatment response
in individuals. With the advent of wearable health sensors and ubiquitous connectivity, data acquisition from multiple
sources is becoming convenient and cost-effective. Cloud data management services and dedicated analytical tools offer a
compelling solution for catering to the growing demand for data-interfaced precision medicine applications. The
complexity of deployment, however, highlights data engineering as a critical concern in the design of precision medicine
solutions.

Risk prediction in cardiovascular, diabetes, and kidney disease areas, prognosis prediction in COVID-19 disease
development, and treatment outcome prediction in response to cancer therapies are explored. A semiautomated pipeline
prototype is developed to demonstrate feasibility, and technology infrastructure specifications for data-supported precision
medicine systems are proposed. This use case enhances understanding of decision-making in risk estimation, treatment
response evaluation, and prognosis.

6. Evaluation Metrics and Research Gaps

Evaluation metrics for Autonomous Data Platforms (ADPs) and associated convergence mechanisms are not
widely addressed. General discussions of evaluation criteria and framework available in the literature often remain abstract
and do not specify performance metrics of ADPs across pillars or for specific use-case scenarios. Performance and
reliability metrics, data quality, lineage, and explainability remain areas where future research is required. To achieve true
vertical and horizontal convergence across Al, MLOps, and Cloud Engineering and Autonomization, systematic design
and quantitative evaluation criteria must be outlined.

An additional area of concern is how quality issues with training data affect model accuracy and how this is
monitored through data quality throughout the ML Model Lifecycle. Both ML Model Lifecycle and Intelligent Data
Pipeline must comprise Data Quality Assessment/Data Quality Control, Data Quality Prediction. Testing for data quality
in the ML model will ensure data quality is one of the components to be monitored together with model performance
discontinuities. The ML Model Lifecycle considers every stage of an ML model from its data collection through training,
Validation, Deployment, Prediction and Monitoring and Management when deployed ensures a smooth flow of all data
and models.

Equation 3) Data quality metrics (freshness, completeness, correctness)
3.1 Completeness
Suppose a dataset has N expected field values (e.g., rows x required columns). Let Npyeeen; be non-missing values.
Step-by-step
1. Define what counts as “missing” (null/empty/out-of-range)
2. Count present values Nyeqen
3. Count expected values N

4. Divide:
N

__ *'present
Ccomplete - N
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3.2 Correctness
Let N,,;;4 be values passing validation rules (type checks, domain constraints, referential integrity, business rules).

C _ Nvalid
correct — N

o Data-quality KPIs (freshness/completeness/correctness) (illustrative)
1.

mmm Before
N After

0.8 1

o
o
|

Score (0-1)

0.2 A

0.0 -

Freshness Completeness Correctness

Fig 6: Data Quality Evaluation Framework for Autonomous Data Platforms: Freshness, Completeness, and
Correctness Metrics

6.1. Performance and Reliability Metrics

Performance, reliability, and resilience measures exist that provide a clear indication of how effectively the various
components serve their required purpose. However, it is widely recognized that technology is not the primary barrier to the
adoption of Platoon’s Intelligent Edge Infrastructure. Existing tests ultimately rely on placing requests on the data ingestion
channel at scale and observing the performance of the system. Key performance metrics include processing latency,
throughput, and so on for the ingestion/processing/output components, while response time, error rate, and availability are
key metrics for data retrieval. Reliability is measured as the percentage of requests that succeed during a defined period,
while resilience refers to the ability of the system to recover quickly from failures and degradation. Resilience is typically
ensured by replicating the cloud service layer across multiple geo-locations and placing clients closer to data sources to
reduce latency.

Research gaps aimed at real-time big data analytics also focus on performance rather than quality or security
aspects of the paths that comprise the pipelines. Apart from the need for complete end-to-end performance metrics under
failure conditions, support for quality evaluates how well the components implement the principles of the target architecture
and the degree of autonomy in executing the associated tasks. This aspect excludes the latency and throughput required for
the subsequent stages, with the emphasis instead on whether the data sources can be discovered automatically and whether
the data processing workload is distributed equitably across the sampling clients.

6.2. Data Quality and Lineage Metrics

Data quality is a key challenge for any data-driven organization. Data often arrives in batch mode, where data
delays, data location, data format, and data semantics lag behind the rapidly changing nature of data production in digital
enterprises. Re-processing the arriving data would introduce additional latency and increased operational overhead on
storage resources. The model’s prediction accuracy is, in general, directly affected by the quality of the data ingestion
pipeline. Quality-related KPIs with respect to freshness, completeness, and correctness should therefore be monitored. Yet,
model accuracy is rarely measured continuously over time. An automated verification procedure is proposed in Kiefer et
al. (2021) to run periodically on the model allowing to detect situation where the model is going out-of-date and needs to
be retrained.

http://jier.org 1305



Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 6 Issue 1 (2026)

Data lineage provides a historical record of the life cycle and transformation of the data in the system, often
spanning over data lakes or data lakes. Automated discovery of data lineage and quality KPIs are useful for making sense
of the data in large organizations with thousands of data sources, supporting faster situational awareness of Al solutions
and getting rid of dark data hidden in the business.

7. Conclusion

In summary, the merits and implications of the autonomous data platform concept have been evaluated. The
amalgamation of AI, MLOps, and cloud engineering principles has addressed major shortcomings of data ecosystem
delivery and ushered in a transformative paradigm shift. An overall clarity of delivery has been achieved by resuming
earlier confusion surrounding the description and implementation of MLOps processes, utilising a holistic, bidirectional
interpretation and integrating aspects of cloud engineering.

The Al-centric, model-driven automation of the data acquisition, refinement, and modelling pipeline rests on
intelligent data ingestion and integration processes that harness the full potential of data fabric, augmented by domain-
agnostic, intelligent data pipelines. Optimal model development is enabled by MLOps-supported working environments
and collaborative business data spaces, with automatic model deployment and monitoring establishing the conduit between
model creation and model consumption. These advances coincide with cloud engineering—inspired automated and demand-
driven provisioning mechanisms, effectively completing the trifecta of AI, MLOps, and cloud engineering convergence.
The concept is currently most advanced in financial services companies pursuing data analytics at scale. Applications in
risk analytics and precision medicine continue to evolve.

Sector Evolution & Delivery Clarity

Clarity of |
Delivery 87.4%

Collaborative 92.8
Data Spaces

Cloud 20.0%
Engineering
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Medicine

87.3%

Risk
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FAnancial 88.6%
Services

o 20 40 60 80
Evolutionary Progress (%)

Fig 7: Sector Evolution & Delivery Clarity
7.1. Final Thoughts and Future Directions

While the presentation of Intelligent Data Pipelines, Automated Model Deployment & Monitoring, and
Executable Data Strategies as a reference tutorial for the convergence of Al within the MLOps and Cloud Engineering
space is helpful, it is not a complete architectural paradigm. An underpinning Data Ingestion and Integration Layer, Storage
and Warehousing or Lakehouse construct are implied, but not explicitly rationalised nor described. Therefore, a completely
self-sufficient Autonomous Data Platform is not yet realised. Furthermore, while the provision of intelligent data pipelines,
automated model deployment and monitoring, and executable data strategies digital transformation process is a salient
contribution, it remains isolated from one of the most unifying cloudsourcing-based infrastructure components of Cloud
Engineering — the orchestration and management of cloud-based container and clusterised workload infrastructures.

Although the outline distilled for Autonomous Data Platforms points to a synergistic alignment between Al,
MLOps and Cloud Engineering, it remains notional; the teaching note focuses specifically on cloud-based data-driven
solutions communities. The principal overlap is the provision of Intelligent Data Pipelines, Automated Model Deployment
and Monitoring, and Executable Data Strategies. Each of these categories fulfils distinct yet complementary elements of
the overarching cloud-based data-driven digital transformation process and deliver synergy to operationalise the complex
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convergence of use case-driven Al Orchestration, MLOps, and Cloud Engineering capabilities within the Autonomous
Data Platform umbrella.
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