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Abstract 

An Autonomous Data Platform integrates data engineering, MLOps, and AI services into a single platform. The 

convergence is important because many business problems that require data analysis, predictive modeling, and monitoring 

can be realized as autonomous data pipelines. Organizations are struggling to establish best practices and standards for 

autonomous data platforms. The research considers the data management principles, conceptual models, and architectural 

patterns of data platforms from a product perspective. Emphasis is placed on the convergence with MLOps and cloud 

engineering. The use cases and evaluations of autonomous data platforms enabled by the convergence are examined. 

With the proliferation of data and new generation artificial intelligence (AI) technologies, organizations are exploring new 

roles, processes, and technology products to groom the data and build data models for predictive analytics and forecasting. 

The autonomy of data pipelines is becoming popular as organizations increasingly require learners and predictors to be 

created, deployed, and monitored automatically. The concept of an Autonomous Data Platform describes a converged 

product combining data engineering, MLOps, and AI services within an organization. Autonomous Data Platforms can be 

realized and realized as intelligent data pipelines that groom data and support organizations in various business functions 

such as customer relationship management and risk analytics systems. 
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1. Introduction 

Autonomous Data Platforms: Converging AI, MLOps, and Cloud Engineering for Digital Transformation. Over 

the last decade, cloud-computing platforms have disrupted enterprise IT. Cloud engineering, combined with customer-

driven development, enables rapid experimentation and industrialization of machine-learning (ML) solutions, resulting in 

an MLOps ecosystem. Nevertheless, the full power of cloud-engineering capabilities and AI, which incorporates full 

autonomy, has yet to be harnessed. 

Autonomous-data-platform architecture achieves this goal by converging three orthogonal domains: AI, MLOps, 

and cloud engineering. By enabling intelligent data-management pipelines on the platform, the architecture makes data 

ingestion and integration proactive, enabling self-service analytics for business users. At the same time, productionizing 

data-science models and monitoring model performance become automatic. These mechanisms enhance failure prevention, 

minimize total cost, and increase an organization’s readiness to act on changing business scenarios. A set of reference 

architectures illustrates how organizations in diverse domains are operationalizing various elements of the architecture. 

1.1. Overview and Objectives of Autonomous Data Platforms 

As digital transformation accelerates, organizations seek to derive greater value from data-driven insights faster 

than before. Autonomous data platforms (ADPs) have emerged as an architectural paradigm to meet this challenge. With 

a declarative, domain-centric approach that integrates cloud engineering, artificial intelligence (AI), machine learning 

(ML), and ML operations (MLOps), ADPs establish a data infrastructure for intelligent automation. By connecting data 

sources, preparing and optimizing data for ML consumption, and automating deployment and monitoring, ADPs create 

intelligent data-pipeline constructs that provide timely, trustworthy, and secure models. 



Journal of Informatics Education and Research 
ISSN: 1526-4726 
Vol 6 Issue 1 (2026) 
 

1296 http://jier.org 

 

Fig 1: Autonomous Data Platforms (ADPs): A Declarative Architectural Paradigm for Scalable Intelligent Data 

Pipelines and MLOps Automation 

Evaluation criteria for ADPs reflect the breadth of enterprise challenges they address. Performance and reliability 

metrics assess the speed and resilience of key deployment pipelines, while data-pipeline costs measure the overall expense 

of hosting and servicing all production pipelines. Intelligent data pipelines, representing the convergence of MLOps, cloud 

engineering, and AI, provide a narrower focus for exploratory case studies. Aligning AI’s exponential capabilities with the 

costs of training and maintaining ML models, intelligent data pipelines automate deployment, monitoring, and performance 

auditing. Subsonic testbeds for enterprise architects reflect ADPs’ declarative approach to managing data and connectivity 

in data-integration pipelines. 

2. Conceptual Foundations of Autonomous Data Platforms 

To facilitate exploration of the capabilities of data automation, a short discussion of the key components of 

Autonomous Data Platforms is warranted. Several areas are examined in detail, including data management principles, the 

AI components required, and the associated capabilities needed to deliver intelligent data pipeline automation. The 

discussion draws on insights from numerous industry case studies, especially those profiled in the IBM CDO Insights 

report series. 

 

Fig 2: Conceptual Foundations of Autonomous Data Platforms: Data Management Principles, AI Components, and 

Intelligent Pipeline Capabilities 

Equation 1) Performance equations (latency, throughput, response time) 

1.1 Processing latency (single request) 

Let a request (or batch) enter a pipeline stage at time 𝑡in and exit at time 𝑡out. 

Step-by-step 

1. Identify the start timestamp: 𝑡in 
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2. Identify the end timestamp: 𝑡out 

3. Subtract: 

𝐿  =  𝑡out − 𝑡in 

If you observe 𝑛 requests with latencies 𝐿1, 𝐿2, … , 𝐿𝑛, then: 

Mean latency 

𝐿‾ =
1

𝑛
∑𝐿𝑖

𝑛

𝑖=1

 

Percentile latency (e.g., p95) 

Sort latencies ascending to get 𝐿(1) ≤ ⋯ ≤ 𝐿(𝑛). 

The p95 index is 𝑘 = ⌈0.95𝑛⌉. 

𝐿𝑝95 = 𝐿(𝑘) 

1.2 Throughput 

Throughput is “volume processed per unit time”. 

Let 𝑁 = number of requests (or records) completed during a measurement window of duration 𝑇 seconds. 

Step-by-step 

1. Count completed units: 𝑁 

2. Measure elapsed wall time: 𝑇 

3. Divide: 

𝑋 =
𝑁

𝑇
 (requests/sec or records/sec) 

1.3 Response time vs processing latency (practical decomposition) 

For retrieval calls, “response time” typically includes queueing/network overhead plus service time. 

Let 

• 𝑊 = waiting/queue/network time 

• 𝑆 = service time (compute + IO in system) 

Then: 

𝑅 = 𝑊 + 𝑆 

2.1 Data Management Principles 

Various key data management principles serve as foundational concepts in the design and delivery of Autonomous 

Data Platforms. The intelligent automation of data pipelines requires three primary principles: Data as Code, Data and AI 

Quality at Source, and Trust by Design. AI-assisted Data and AI Quality at Source focus on quality remediation in data 

pipelines incorporating data validation checks and balances. Data as Code ensures a seamless application of infrastructure-

as-code principles to the data engineering and data science space. Data and AI Quality at Source and Trust by Design 

collectively mandate the application of checks and validations to guarantee high-quality datasets and models, as Bruin et 

al. point out. 

The application of privacy-preserving AI methods across the data and AI pipeline, such as encrypted computation 

and differential privacy, are important enablers of the Trust by Design principle. Consequently, AI-assisted Data and AI 

Quality at Source and Trust-by-Design are often employed in combination, alongside the Data as Code principle, to 

automate the majority of the data and AI pipeline lifecycle, including monitoring and triggering. 
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Table 1. Latency and Throughput Comparison Between Traditional Pipelines and Autonomous Data 

Platform (ADP) 

Pipeline stage Latency (ms) - Traditional Latency (ms) - ADP Throughput (req/s) - Traditional 

Ingestion 850 520 180 

Integration 1200 760 140 

Transformation 1600 980 110 

Serving 500 340 260 

2.1. Data Management Principles 

The architecture incorporates multiple data ingestion and integration subsystems capable of capturing a wide 

variety of data sources, both structured and unstructured. These components offer services for data discovery and profiling 

and are responsible for the automated collection, cleansing, and cataloguing of such data via intelligent data pipelines, 

using AI-based approaches to define the needed transformations and enrichment for structured data, and providing 

interview-like natural-language question-and-answer interfaces to unstructured documents and images. Quality checks 

based on data characteristics, semantics, and business rules are automatically assigned to the data using AI, and monitored 

through an MLOps-like framework. As a result, clean quality data are readily available for core data warehouses and/or 

lakezones organized around business domains and lines of processes. 

The proposed architecture also incorporates specialized MLOps components for data-driven decision-making, e.g. 

risk predictions in financial services or diagnosis and treatment recommendations in the healthcare sector. Tracking of 

business quality is context-dependent and is performed by dedicated information systems built on top of the Clean Data 

and MLOps Layers. Longitudinal analysis of quality can be complemented by development indicators that anticipate 

business outcomes, such as an increasing probability of loan defaults. In the same fashion as the data pipelines, the deploy-

test-rerun cycles of machine-learning models are also wrapped with a model-monitoring service set in two levels: a first-

level trigger detects changes in the input data, while a second-level trigger computes model-performance metrics. 

2.2. AI Components and Capabilities 

Autonomous Data Platforms enhance conventional data Management, support Digital Transformation initiatives, 

and accelerate advanced AI adoption. Principal operational objectives are to automate end-to-end autonomous data 

management processes, capitalizing on proprietary enterprise data offering significant monetization potential and providing 

a unified single point of inference for Business Analytics. The migration of AI capabilities from Business Intelligence-

centric descriptive and diagnostic to predictive, prescriptive, and ultimately autonomous decision-making has generated 

information-as-a-product demands. The autonomy of Cloud Engineering systems has focused attention on establishing 

demand- or supply-driven intelligent data pipelines capable of ingesting data from enterprise or external sources at Scale 

and Frequency, integrating, transforming, and curating it for prepared Business Analytics Consumption. Convergence 

mechanisms between proprietary enterprise data management and market-led AI components establish Data Wrangler and 

MLOps Processes to deliver intelligent Data Pipelines. 

The focus on supply-driven intelligent data pipelines has mainly centered on the ingestion, integration, and 

transformation stages within an end-to-end data management process. Such pipelines automate the modeling, generation, 

and deployment of data products supporting model inference for predictive and prescriptive ML use cases. A foundation 

of Quality and Reliable Data-as-a-Service is a prerequisite; accordingly, a MLOps Process manages the Design, 

Implementation, and Deployment of Logical Data Models and Services controlling Model Inference Data Products within 

an autonomous data engineering environment. The enterprise Cloud Engineering Systems automate the deployment of 

predictive Maintenance Models, production-ready MI and AI Models and Services at scale, monitored and governed by a 

suitable model factory environment. 

3. Architectural Paradigms and Reference Architectures 

Reference architectures for data acquisition and ingestion, big data storage and management, and data warehouses 

and lakehouses consider the different architectural paradigms that support the construction of Autonomous Data Platforms. 
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Data typically enter these platforms through Intelligent Data Pipelines, which automatically adapt their behavior based on 

underlying data and ongoing operational processes. Such pipelines are in turn aligned with new generations of data 

management systems comprising not only cloud-based data warehouses and lakehouses but also management, processing, 

and analytical frameworks specifically conceived for big data domains. 

The Data Ingestion and Integration Layer plays a critical role in the successful deployment of Autonomous-Data-

Management Platforms. Consistent support for DataOps principles helps ensure that data pipelines adjust their behavior in 

a timely manner according to Data-Management-and-Analytics-as-a-Service strategy and at the same time in support of 

MLOps principles aligned with the data-prepare, data-build, and data-serve stages of MLOps and Machine Learning 

Engineering lifecycles. In turn, Intelligent Data Pipelines DataOps-aware by design help enforce a fit-for-use approach to 

data ingestion into big Data Management Constructs or Data Warehouses and Lakehouses, enabling correct preparation of 

data assets for use in advanced analytics (e.g., predictive risk analytics, machine learning, graphical-model-based). 

3.1. Data Ingestion and Integration Layer 

The Data Ingestion and Integration layer facilitates data collection and integration from a wide variety of sources. 

While traditional platforms perform these functions semi-automatically, autonomous platforms deploy mechanisms that 

enable real-time operation and expose AI-generated data quality and reliability scores as metadata. Intelligent data pipelines 

that monitor data quality during ingestion and data lineage for tracking data movement and change over time appear 

essential to a truly operational Autonomous Data Platform. 

The Autonomous Data Platform is often seen as an extension of traditional MLOps systems that automatically 

manage the data life cycle for machine-learning model building and performance on production data. However, Kallio and 

Saitta propose a broader viewpoint that embraces data engineering and Cloud Engineering for overall industrial production 

and enterprise decision-making. Convergence happens in two ways. First, the ingredients of the ingested data engineering 

can come from anywhere and in any form—structured, unstructured, or semi-structured—as long as data-processing quality 

can be ensured through data quality and reliability scoring. Second, once ingested, data enters data stores prepared for safe 

storage, backed up for disaster recovery, or governed for regulatory compliance. 

 

Fig 3: Autonomous Data Platforms: Converging MLOps, Cloud Engineering, and AI-Driven Governance for 

Enterprise Decision-Making 

3.2. Storage and Data Warehouse/Lakehouse Constructs 

Autonomous Data Platforms combine the enabling AI principle of data consumption on demand with a Cloud 

Engineering data-as-a-service (DaaS) architecture layer by exposing data through intelligent data pipelines. These integrate 

data ingestion, storage, and transformation, thus establishing an end-to-end data pipeline—from source to analytical 

consumption. Data Ingestion and Integration layers automatically clean, harmonize, aggregate, and exploit this 

heterogeneous data. The output is enriched, thoroughly documented, and served in a self-service manner across data 

landscapes and analytical use cases. 
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The demand for self-service access is critical to business success. Yet without proper controls, business users can 

consume any data, possibly leading to major reputational issues due to incorrect conclusions drawn from integrating 

different datasets. Such a self-service requirement makes it challenging to guarantee the correctness of the analytical results. 

A way to reconcile this conflict is to enable companies to consume data on demand and integrate the consumption into the 

data life cycle itself through automated data lineage, which allows trustworthy results to be achieved. 

Table 2. System Reliability, Availability, and Error Rate Comparison 

System Reliability (success fraction) Availability (uptime fraction) Error rate (1 - reliability) 

Traditional 0.965 0.985 0.03500000000000003 

ADP 0.992 0.998 0.008000000000000007 

4. Convergence Mechanisms: AI, MLOps, and Cloud Engineering in Practice 

Intelligent data pipelines as autonomous learning systems reduce human involvement in data preparation and 

machine learning, managing the traditional 90% of execution time devoted to these tasks. The operations, system, and 

mechanisms of these pipelines are studied, highlighting the challenges and opportunities presented by the ubiquitous 

availability of data. Each step of the pipeline becomes autonomous, resulting in reliability and performance gains for 

different conditions. Recently, increasing interest has been directed at automatically deploying machine learning models 

in production and monitoring them to detect performance degradation. The monitoring systems integrate with MLOps, 

allowing models to be automatically refreshed and re-validated without previously requiring expert involvement. 

The convergence of AI, cloud computing, edge and fog computing, cybersecurity, protocol standards, and other 

technologies requires multiple technical domains and skill sets for research and evolution in practice. The definition of 

Autonomous Data Platforms connects these technologies and components by focusing on data as the point of convergence. 

The union of ML with Data and Cloud Engineering converging with MLOps completes the loop. AI also requires skilled 

Data Engineering. Data Pipelines and Data Strategy Automation are paramount challenges to reduce support costs, increase 

the breadth of support, and allow the automation of the usually manually intensive aspects of most data projects and 

pipelines. 

 

Fig 4: System Reliability Model in Autonomous Data Platforms: Relationships Among Reliability, Error Rate, 

Availability, and Resilience 

Equation 2) Reliability, error rate, availability, resilience 

2.1 Reliability (request success fraction) 

Let: 

• 𝑁ok = number of successful requests in a period 

• 𝑁tot = total requests in the same period 
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Step-by-step 

4. Count successes: 𝑁ok 

5. Count total: 𝑁tot 

6. Divide: 

Reliability (𝑅𝑒𝑙) =
𝑁ok

𝑁tot

 

2.2 Error rate 

Let 𝑁err = 𝑁tot − 𝑁ok. 

ErrorRate =
𝑁err

𝑁tot

= 1 − 𝑅𝑒𝑙 

2.3 Availability (uptime fraction) 

Over an observation window of length 𝑇 (minutes/hours), let downtime be 𝐷. 

Step-by-step 

7. Measure total time 𝑇 

8. Measure downtime 𝐷 

9. Compute uptime 𝑈 = 𝑇 − 𝐷 

10. Divide: 

𝐴 =
𝑈

𝑇
=
𝑇 − 𝐷

𝑇
= 1 −

𝐷

𝑇
 

A common SRE form uses MTBF/MTTR: 

Let: 

• MTBF = mean time between failures 

• MTTR = mean time to recover 

𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅
 

4.1. Intelligent Data Pipelines 

Automation, optimization, and enhanced quality are three important goals of any data platform. Considered in 

isolation to other workflow elements, data ingestion, transformation, and integration should be automated and optimized 

to minimize execution time and maximize the volume of data processed. Quality enhancement is ideally achieved through 

realization of a data-warehouse construct that performs data cleaning, transformation, and enrichment, thereby ingesting 

data that is suitably fit for consumption by downstream processes. These objectives provide a basis for a separate focus on 

Intelligent Data Pipelines, where pipelining is treated as the focus of intelligent orchestration. 

Taking a broader view, orchestration of the entire workflow—from data ingestion through storage to consumer 

consumption of analytics or AI-visible artifacts—can be guided by AI throughout, with the aim of achieving improved 

execution time, reliability, and reduced human intervention. Three classes of intelligent orchestration can be identified: 

1. **Request-Pipeline Orchestration** — orchestration of all the underlying data pipeline requests that are 

executed at different stages to derive the output request. 

2. **ML/AI Pipeline Execution** — execution of ML and AI pipelines from requests raised by users or from the 

Data Product Catalog. 
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3. **Intelligent Data Flow Management** — intelligent management of the data flow in real-time from an origin 

to destination by modeling the data flow as a dynamic data graph, with a self-healing capability that utilizes predictive 

analysis for proactive decision support. 

Aspects of intelligent request-pipeline orchestration consider an autonomous Data Pipeline Catalog that acts as a 

repository of data pipeline requests, their metadata information, and Details of the results generated. 

The Data Pipeline Catalog acts as a guiding tool to Intelligent Model Calibration, the objective of which is to 

identify the best hyperparameters for a data pipeline to improve run-time performance, quality, self-healing ability, and 

model maintainability. Intelligent Model Calibration approaches enable reliable execution by addressing wrong 

hyperparameter settings and help users by providing better models of higher interest. 

4.2. Automated Model Deployment and Monitoring 

Continuous monitoring of deployed models is essential to ensure sustained accuracy and reliability. Such 

monitoring detects changes in data or distribution patterns, alerting stakeholders to potential model obsolescence. But 

incorporating MLOps capabilities for subsequent retraining of models remains the responsibility of data engineers or 

researchers, in contrast with other components of AsA is. However, factory-like mass production is possible for simple 

models trained on structured tabular data by applying patterns instead of customized designs. Implementing these patterns 

allows continuous updates of master models by MLOps group, enabling re-prediction and replacing models that are no 

longer valid. Automated production of hop-on-hop-off models based on fresh data or user queries also enhances model 

selection and time-to-market, thus offering an inventory of models through self-service provisioning. 

Applications in fraud detection cover account takeover, identity theft, and credit card fraud. For credit card 

transaction models, data preparation and model training are both complex. Nevertheless, a single stream-based solution 

pattern can be applied to end-to-end data preparation, automating the preparation and retraining of data pipelines. An 

architecture pattern for operationalization of bank accounts—instantiation, monitoring, and shut down of accounts for 

credit risk and fraud detection—is particularly useful in fraud and relationship management. The extensibility and 

adaptability of the architecture make it suitable for diverse industries where fast model production in MLOps factory mode 

is imperative. 

5. Use Case Scenarios and Industry Applications 

The application of autonomous data platforms in industry can be illustrated with practical use-case scenarios. 

Such platforms correspond to Integration for Decision Making and Decision Making Objectives, and several scenarios are 

explored in these contexts. Finance and Healthcare are seminal industry domains that rely on data-driven models for key 

decisions and risk management. Consequently, an application of Autonomous Data Platforms in these industry domains 

can provide some insights. 

An example of a data-driven approach in financial services is a solution developed for the risk analytics group of 

a top-tier global bank. Financial institutions must comply with regulatory requirements for capital and liquidity buffers and 

are required to produce periodic Internal Capital Adequacy Assessment Process (ICAAP) reports that demonstrate required 

stress-testing processes and govern these positions under stressed economy-wide conditions. The projected values of risk 

factors and key financial ratios over a severe recession are crucial inputs to running holistic stress scenarios. The 

penultimate ICAAP report included a model that produced such projections based on 12 key risk factors and was thus used 

to run the stress scenarios. However, the model involved considerable labour and analytical effort to prepare inputs, run 

the engine under a set of scenarios, and validate the outputs. 

Healthcare and precision medicine benefit from several data sources that are traditionally monitored separately. 

Examples of these data sources include Electronic Health Records (EHR), medical images, and genomic data. The 

autonomous data platform solution ingests such patient data from different sources (ingestion layer) and integrates it into 

a coherent dataset for a single patient (integration layer). A simple and interpretable model predicts cancer risk with the 

new dataset (decision-making). Furthermore, the data lineage capabilities that document the provenance of the data and 

the inheritance of data product quality support a clinical trial of the model using a new set of clinical data. These trials 

ultimately help validate patient and public trust in the model, allowing it to be deployed in the EHR product. 
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Table 3. Data Quality KPI Improvements Before and After ADP Automation 

KPI Before (semi-automated) After (ADP w/ automated checks) 

Freshness 0.72 0.9 

Completeness 0.81 0.94 

Correctness 0.78 0.92 

 

5.1. Financial Services and Risk Analytics 

Autonomous Data Platforms are being deployed for Digital Transformation use cases across multiple industries. 

A first set of applications has been defined by the convergence of AI, MLOps and Cloud Engineering in the financial 

services sector, focusing mainly on improving operational efficiency and predictive capability. The two Use Case scenarios 

selected are Intelligent Financial Risk Analytics and MLOps-based Autonomous Risk Model Frameworks. 

Financial Services represents a major area for the design of Autonomous Data Platforms, where AI, MLOps and 

Cloud Engineering converge towards Digital Transformation driven by business imperatives (Gartner, 2021). During 2020 

the industry was put under increasing pressure by COVID-19-related business uncertainties and within the following 10 

months was busy battling through fluctuating levels of severity. As market conditions remain volatile, companies strive to 

regain control of their destiny by scaling back costs, managing financial risks, complying with regulatory obligations, 

optimising their capital, and investing in profitable business growth. Technological developments play an important part 

in supporting these imperatives through improved operational efficiency and increased predictive capability. 

In the area of operational efficiency, financial institutions continue to automate repetitive processes, using 

Business Process Management (BPM) systems and Robotic Process Automation (RPA). However, these initiatives can be 

improved further through enhanced usability by business users, higher quality and real-time data, and the discovery of 

previously unachievable automation opportunities. These requirements can be addressed by the creation of Intelligent 

Financial Risk Analytics, which apply natural-language queries and AI-driven intelligent data pipelines to make data 

preparation for risk analysis faster, easier and more efficient. 

 

 

Fig 5: Convergence of AI, MLOps, and Cloud Engineering: Architecting Autonomous Data Platforms for Intelligent 

Financial Risk Analytics 
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5.2. Healthcare and Precision Medicine 

The healthcare sector relies on data-driven decision-making processes for improving organizational efficiency 

and enhancing patient care. Data platforms play a critical role in analyzing patient records, diagnosing diseases, and 

predicting treatment outcomes. With the growing popularity of cloud-based services and information as a service, 

infrastructure-as-a-service, and platform-as-a-service offerings for healthcare data analysis become more popular. 

Deploying autonomous data platforms in the healthcare domain enhances performance, reduces costs, and improves patient 

experience. 

Prioritizing patient-centric treatment has led to a shift towards a data-informed approach. Precision medicine uses 

data from a variety of sources, including genetic and genomic factors, to characterize disease risk and treatment response 

in individuals. With the advent of wearable health sensors and ubiquitous connectivity, data acquisition from multiple 

sources is becoming convenient and cost-effective. Cloud data management services and dedicated analytical tools offer a 

compelling solution for catering to the growing demand for data-interfaced precision medicine applications. The 

complexity of deployment, however, highlights data engineering as a critical concern in the design of precision medicine 

solutions. 

Risk prediction in cardiovascular, diabetes, and kidney disease areas, prognosis prediction in COVID-19 disease 

development, and treatment outcome prediction in response to cancer therapies are explored. A semiautomated pipeline 

prototype is developed to demonstrate feasibility, and technology infrastructure specifications for data-supported precision 

medicine systems are proposed. This use case enhances understanding of decision-making in risk estimation, treatment 

response evaluation, and prognosis. 

6. Evaluation Metrics and Research Gaps 

Evaluation metrics for Autonomous Data Platforms (ADPs) and associated convergence mechanisms are not 

widely addressed. General discussions of evaluation criteria and framework available in the literature often remain abstract 

and do not specify performance metrics of ADPs across pillars or for specific use-case scenarios. Performance and 

reliability metrics, data quality, lineage, and explainability remain areas where future research is required. To achieve true 

vertical and horizontal convergence across AI, MLOps, and Cloud Engineering and Autonomization, systematic design 

and quantitative evaluation criteria must be outlined. 

An additional area of concern is how quality issues with training data affect model accuracy and how this is 

monitored through data quality throughout the ML Model Lifecycle. Both ML Model Lifecycle and Intelligent Data 

Pipeline must comprise Data Quality Assessment/Data Quality Control, Data Quality Prediction. Testing for data quality 

in the ML model will ensure data quality is one of the components to be monitored together with model performance 

discontinuities. The ML Model Lifecycle considers every stage of an ML model from its data collection through training, 

Validation, Deployment, Prediction and Monitoring and Management when deployed ensures a smooth flow of all data 

and models. 

Equation 3) Data quality metrics (freshness, completeness, correctness) 

3.1 Completeness 

Suppose a dataset has 𝑁 expected field values (e.g., rows × required columns). Let 𝑁present be non-missing values. 

Step-by-step 

1. Define what counts as “missing” (null/empty/out-of-range) 

2. Count present values 𝑁present 

3. Count expected values 𝑁 

4. Divide: 

𝐶complete =
𝑁present

𝑁
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3.2 Correctness 

Let 𝑁valid be values passing validation rules (type checks, domain constraints, referential integrity, business rules). 

𝐶correct =
𝑁valid

𝑁
 

 

Fig 6: Data Quality Evaluation Framework for Autonomous Data Platforms: Freshness, Completeness, and 

Correctness Metrics 

 

6.1. Performance and Reliability Metrics 

Performance, reliability, and resilience measures exist that provide a clear indication of how effectively the various 

components serve their required purpose. However, it is widely recognized that technology is not the primary barrier to the 

adoption of Platoon’s Intelligent Edge Infrastructure. Existing tests ultimately rely on placing requests on the data ingestion 

channel at scale and observing the performance of the system. Key performance metrics include processing latency, 

throughput, and so on for the ingestion/processing/output components, while response time, error rate, and availability are 

key metrics for data retrieval. Reliability is measured as the percentage of requests that succeed during a defined period, 

while resilience refers to the ability of the system to recover quickly from failures and degradation. Resilience is typically 

ensured by replicating the cloud service layer across multiple geo-locations and placing clients closer to data sources to 

reduce latency. 

Research gaps aimed at real-time big data analytics also focus on performance rather than quality or security 

aspects of the paths that comprise the pipelines. Apart from the need for complete end-to-end performance metrics under 

failure conditions, support for quality evaluates how well the components implement the principles of the target architecture 

and the degree of autonomy in executing the associated tasks. This aspect excludes the latency and throughput required for 

the subsequent stages, with the emphasis instead on whether the data sources can be discovered automatically and whether 

the data processing workload is distributed equitably across the sampling clients. 

6.2. Data Quality and Lineage Metrics 

Data quality is a key challenge for any data-driven organization. Data often arrives in batch mode, where data 

delays, data location, data format, and data semantics lag behind the rapidly changing nature of data production in digital 

enterprises. Re-processing the arriving data would introduce additional latency and increased operational overhead on 

storage resources. The model’s prediction accuracy is, in general, directly affected by the quality of the data ingestion 

pipeline. Quality-related KPIs with respect to freshness, completeness, and correctness should therefore be monitored. Yet, 

model accuracy is rarely measured continuously over time. An automated verification procedure is proposed in Kiefer et 

al. (2021) to run periodically on the model allowing to detect situation where the model is going out-of-date and needs to 

be retrained. 
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Data lineage provides a historical record of the life cycle and transformation of the data in the system, often 

spanning over data lakes or data lakes. Automated discovery of data lineage and quality KPIs are useful for making sense 

of the data in large organizations with thousands of data sources, supporting faster situational awareness of AI solutions 

and getting rid of dark data hidden in the business. 

7. Conclusion 

In summary, the merits and implications of the autonomous data platform concept have been evaluated. The 

amalgamation of AI, MLOps, and cloud engineering principles has addressed major shortcomings of data ecosystem 

delivery and ushered in a transformative paradigm shift. An overall clarity of delivery has been achieved by resuming 

earlier confusion surrounding the description and implementation of MLOps processes, utilising a holistic, bidirectional 

interpretation and integrating aspects of cloud engineering. 

The AI-centric, model-driven automation of the data acquisition, refinement, and modelling pipeline rests on 

intelligent data ingestion and integration processes that harness the full potential of data fabric, augmented by domain-

agnostic, intelligent data pipelines. Optimal model development is enabled by MLOps-supported working environments 

and collaborative business data spaces, with automatic model deployment and monitoring establishing the conduit between 

model creation and model consumption. These advances coincide with cloud engineering–inspired automated and demand-

driven provisioning mechanisms, effectively completing the trifecta of AI, MLOps, and cloud engineering convergence. 

The concept is currently most advanced in financial services companies pursuing data analytics at scale. Applications in 

risk analytics and precision medicine continue to evolve. 

 

                                             Fig 7: Sector Evolution & Delivery Clarity 

7.1. Final Thoughts and Future Directions 

While the presentation of Intelligent Data Pipelines, Automated Model Deployment & Monitoring, and 

Executable Data Strategies as a reference tutorial for the convergence of AI within the MLOps and Cloud Engineering 

space is helpful, it is not a complete architectural paradigm. An underpinning Data Ingestion and Integration Layer, Storage 

and Warehousing or Lakehouse construct are implied, but not explicitly rationalised nor described. Therefore, a completely 

self-sufficient Autonomous Data Platform is not yet realised. Furthermore, while the provision of intelligent data pipelines, 

automated model deployment and monitoring, and executable data strategies digital transformation process is a salient 

contribution, it remains isolated from one of the most unifying cloudsourcing-based infrastructure components of Cloud 

Engineering – the orchestration and management of cloud-based container and clusterised workload infrastructures. 

Although the outline distilled for Autonomous Data Platforms points to a synergistic alignment between AI, 

MLOps and Cloud Engineering, it remains notional; the teaching note focuses specifically on cloud-based data-driven 

solutions communities. The principal overlap is the provision of Intelligent Data Pipelines, Automated Model Deployment 

and Monitoring, and Executable Data Strategies. Each of these categories fulfils distinct yet complementary elements of 

the overarching cloud-based data-driven digital transformation process and deliver synergy to operationalise the complex 
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convergence of use case-driven AI Orchestration, MLOps, and Cloud Engineering capabilities within the Autonomous 

Data Platform umbrella. 
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