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ABSTRACT

Federation of cloud is a collaborative model in which multiple cloud providers participate by
sharing resource, services and data across their platform. This collaboration is aimed to create a
unified system where user can benefit from multiple cloud providers while maintain the
independence of each participating cloud. One of the key component for sustainability and
successful operation of a federation of clouds is its efficient resource selection model. Resource
selection has always been a challenge in cloud computing and is even more challenging in a
Federation or multi-cloud setup. Researchers have dealt with this problem in various ways. Most
of these existing algorithms in consider processor and memory needs without considering the
bandwidth requirements of an application. In this paper, two-stage Latency-Aware Resource
Selection (LA-RS) algorithm has been proposed to obtain a balance between various confronting
objectives including Quality of Service (QoS), cost and completion time of applications. The first
phase of the proposed algorithm figures out the top corresponding computing resources for the
input tasks that satisfy their QoS requirements including cost and also considers network-latency
in a federation or multi-cloud environment; the subsequent phase applies genetic algorithm that
iteratively re-allocates the input tasks to optimize tasks execution time and cost. The comparison
of proposed algorithm with existing algorithm clearly exhibits that along with considering the
bandwidth of the underlying network, proposed algorithm achieves the objectives of optimal
minimum execution time as well as optimal minimum cost.

1. Introduction

Federation of clouds presents an environment to consumers in which multiple cloud providers
participate in order to offer services to its users (Agostinho et al. 2011). It generally involves a
huge amount of data transmission. As federation of clouds presents a promise of offering a set of
huge infrastructure services, platform services and application based services as on-demand
service over Internet, its success largely depends on the quality of underneath network. The need
of numerous data exchanges among physical or virtual resources in data-intensive scientific
workflow applications also necessitates an efficient task-scheduling and resource selection scheme
that carefully optimizes various objectives of scheduling and meets deadline constraints
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(Malawski et al. 2012; Nayak and Tripathy 2018), optimizes cost (Moschakis and Karatza 2012)
and conserves energy etc. Since, applications scheduled without considering the available
bandwidth may impede performance execution, resulting in wastage of resources. Also a
scheduling algorithm that does not consider bandwidth as a parameter may schedule an application
to a cloud provider through a channel having low availability of bandwidth while another channel
with better bandwidth may remain unused.

Many Researchers have investigated the problem of scheduling the tasks and resource allocation
in clouds and federation of clouds from various perspectives such as execution cost, makespan,
energy, reliability and fault tolerance etc. Few researchers have developed the algorithms with
only one objective in focus whereas a bunch of them have considered bi-objective algorithms
based on meta-heuristic approaches (Heba 2024; Mezmaz et al. 2011).

In the recent past, many strategies and algorithms have been proposed by researchers (Heba 2024;
Khan and Ahmad 2009; Kofahi et al. 2019) to optimize the task scheduling and resource selection
in a federation of clouds. But unfortunately, most of these algorithms are centred on allocation of
processor and memory to various applications and ignore the important factor of bandwidth
requirements. The contribution of this paper is a multi-objective resource selection algorithm that
takes into account the bandwidth of the links connecting different providers’ domains in order to
avoid quality of service degradation. The rest of the paper is organized as follows. Section 2
represents the related work in this domain. Section 3 involves formulation of problem and section
4 proposes the latency-aware resource selection algorithm. Section 5 and 6 experimentally
evaluate the proposed algorithm, results received and discussion based upon it. Section 7 presents
a conclusion.

2. Related Work

A heuristic based critical greedy algorithm was proposed for laaS clouds to achieve minimum end
to end delay besides keeping the cost under user specified constraint in paper (Malawski et al.
2012).

A novel Min-Min algorithm is proposed (Huankai Chen et al. 2013) to schedule such applications
on clouds that involve considerable network communication. The proposed algorithm is capable
of adapting to the change of network transmission speed autonomously. Authors (Mezmaz et al.
2011) developed bi-objective dynamic level scheduling algorithm and bi-objective genetic
algorithm for a federation of clouds. Both of these algorithms can trade off execution time against
the reliability of the application.

Moreover, a cooperative game theory based solution has been proposed (Khan and Ahmad 2009)
for task scheduling in computational grids. Their algorithm minimizes the energy consumption
and makespan while meeting the deadline constraints. (Mezmaz et al. 2011) proposed a parallel
bi-objective genetic algorithm for cloud computing system that focused on minimizing the energy
consumption and makespan. The algorithm was based on cooperative island farmer-worker model
and reported a non-dominated Pareto set of scheduling solutions.

Additionally a variety of eight heuristics for energy consumption aware task scheduling in large-
scale distributed systems (Lindberg et al. 2012) has been presented. Six of these heuristics were
greedy heuristics and two heuristics were based on genetic algorithm. All of these strategies tried
to achieve an optimal solution under deadline and memory restrictions. Another task scheduling
model for cloud computing based on multi-objective genetic algorithms has been proposed
in(Behzad, Fotohi, and Effatparvar 2013). The proposed task scheduling method attempts to
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minimize the energy consumption, maximizes the profits while meeting the deadline constraints
of the application.

A heterogeneous Budget constrained scheduling algorithm has been proposed in (Arabnejad and
Barbosa 2014) for service-oriented computing that maintains the execution cost under pre
specified budget and also minimizes the execution time of the application to maintain the lower
makespan.

Researchers in (Dorronsoro et al. 2014) presented a two level strategy focused on multi-objective
problem of scheduling large workloads of parallel applications in multi-core distributed systems.
Their objectives were to optimize the makespan and energy consumption. Authors also evaluated
few QoS metrics that helped them to optimize their objective functions besides maximizing the
Quality of Service.

Authors (Ebadifard and Babamir 2018) presented Round-Robin (RR) and Particle Swarm
Optimization (PSO) hybrid algorithm focused on minimizing the execution cost but skipping the
cost and other QoS parameters altogether. The study in (Abdulhamid et al. 2018) attempted to
achieve two optimization objectives of minimum execution cost and minimum execution time in
cloud computing environment. The major characteristic of the presented algorithm is that it also
considers the fault and recovery time in case of failure. The paper (lturriaga et al. 2016) undertakes
the scheduling in a federation of distributed data centres as a multi constrained and bi-objective
problem and intends to optimize cost and energy. The work is oriented to find Pareto optimal
schedules i.e. where none of the scheduling order can substantially dominate the other schedules
with lower cost and good bandwidth. However, their algorithm did not attend the bandwidth
requirements of tasks.

Research work proposed in (Ebadifard and Babamir 2018) and (Lu and Sun, 2019) focused on
balancing the load distribution of incoming tasks to attain higher average resource utilization ratio
but their algorithms suffered from lower QoS, High Cost and low fault tolerance. Research study
in (Praveen, Rao, and Janakiramaiah 2018) proposed unique meta-heuristic solutions for task
scheduling using social group optimization and SJF algorithm but also concluded that not a single
proposed technique is suitable to all variations of workload. Research work in (Dubey, Kumar,
and Sharma 2018) modified the well-established conventional task scheduling algorithm namely
Modified Heterogeneous Earliest Finish Time (Modified HEFT) that was able to handle only static
workload.

Various researchers have tried to solve the problem of resource selection and developed algorithms
in cloud computing environment. Their studies have categorized various proposed resource
selection algorithms in many different classes such as static algorithms (dealing with
predetermined requests of resources) /dynamic algorithms (Ding et al. 2020; Nabi, Ibrahim, and
Jimenez 2021), (Chhabra and Gupta 2024) (dealing with request for varying quantity of resources),
batch-mode (dealing with a bunch of tasks together) /online algorithms (dealing with interactive
task requests), pre-emptive or non-pre-emptive algorithms and centralized or distributed
algorithms etc. one more categorization is based on the characteristics of the incoming tasks or on
the characteristics of the data-centre of provider (Cheng, Li, and Nazarian 2018; Mishra et al.
2018; Wu and Wang 2018). Here data-centre characteristics represents infrastructure attributes of
the provider viz. computational capabilities of virtual machines, size of primary memory, available
bandwidth etc. The cloudlets/tasks characteristics includes the resource requirements of the
tasks/cloudlets viz. memory requirements, QoS required, bandwidth required amongst others.

In research work (Pradeep and Jacob 2018), researchers proposed a task scheduling algorithm that
combined the merits of cuckoo search and gravitational search algorithms and overcome their
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shortcomings. The proposed solution was compared with GSA, GA and PSO algorithms. The
results proved that the proposed hybrid algorithm performed better on various metrics. The study
evaluated the proposed algorithm on cost/profit and energy metrics whereas few important aspects
of bandwidth/network latency and makespan have not been attended. One more cloudy-
gravitational search algorithm (CGSA) for scheduling the tasks was proposed in (Chaudhary and
Kumar 2018) with an objective to achieve lower makespan but it also incurred high cost and low
QoS to do so. Whereas a study in(Wei and Zeng 2019) proposed a novel idea of hybrid differential
parallel computing to process the dynamic incoming tasks on available resources to maintain low
energy consumption but with a trade-off of high overhead and low Average Resource Utilization
(ARU).

Research work in (Dubey and Sharma 2021) proposed a novel PSO based algorithm that has the
dual properties of chemical reaction and particle swarming optimization both. The algorithm
produces the set of optimal sequence depending upon the deadline and it proved to enhance the
cost, makespan and energy-efficiency. The results were compared with existing peer category
algorithms using CloudSim toolkit and an average improvement of 1 to 6 percent in makespan and
1 to 9 percent in energy-efficiency was claimed. The authors did not attend to the bandwidth, load
balancing, and lowering the task rejection ratio.

Strategies of Linear Descending and Adaptive Inertia Weight that is based on providing an
appropriate inertia weight was introduced in (Nabi et al. 2022) that adds feature of adaptability to
their PSO algorithm. Due to this, the algorithm behaves optimally and attains the improvement of
12% to 60 % in makespan and average resource utilization. The algorithm fails to respond to
delay-sensitive tasks and also did not attend to the requirements of bandwidth.

Authors in (Singh et al. 2021) have presented an insight on six major meta-heuristic algorithms
that are nature-inspired. They also presented the comparison of these algorithms based on few
metrics such as makespan, average resource utilization. The algorithms were ACO, PSO, GA,
ABC, C(crow)SA, P(penguin)SO algorithm. The experimental comparisons of these algorithms
proved that Crow Search algorithm produces the most optimal schedule to attain best makespan
and average resource utilization and this algorithm is closely followed by Penguin Search
algorithm.

(Houssein et al. 2021) presented the review of task scheduling algorithms that are based on all
major meta-heuristics scheduling techniques viz. Evolutionary algorithms, swarm based
scheduling algorithms, emerging scheduling algorithms and hybrid meta-heuristic algorithms.
Authors also categorized the various task scheduling problems according to single-
objective/multi-objective problems and restrictions such as deadline etc. The study revealed
various challenges associated with all categories of algorithms and their tentative solutions also.
The review presented in this paper suggest that majority of the work has been carried out
considering single objective (such as scalability, throughput, reliability etc.) as a metric for
resource selection whereas multi-objective algorithms are much less in number hence can be
addressed in future work.

Furthermore, a two-stage task scheduling algorithm (EPETS- Energy and Performance Efficient
Task Scheduling Algorithm) has been mentioned in (Hussain et al. 2021) that deals with lowering
the execution time while meeting the deadlines in the first stage and to do the resource-task
mapping while meeting the objective of lower energy-consumption in the second stage. Their
research suggested to use energy-efficient task priority system for scheduling the tasks to achieve
true balance between energy-consumption and efficient task scheduling. Their suggestion also
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proved to attain the stated objectives when compared with existing energy-efficient algorithms
using simulation.

(Abualigah and Alkhrabsheh 2022) proposed a novel hybrid task scheduling algorithm that
combines the features of multi-verse optimizer and Genetic algorithm. The proposed algorithm is
focused to improve the rate of transfer of tasks on the cloud network and thus improving the
performance in the initial phase. The proposed algorithm undertook the decision of task-transfer
depending on various task-specific parameters such as size of task, number of tasks, number of
VMs, capacity etc. The proposed solution was simulated using MATLAB tool and proved to
optimize the performance even with large task sizes hence scalable. The proposed solution did not
attend the various constraints such as meeting deadlines or bandwidth.

A separate literature discussed in (Zhu et al. 2021), a two phase task scheduling algorithm has
been presented that did the task-resource mapping in first phase (in lines with the requirements of
security and reliability) and optimization in the second phase of the algorithm to optimize the
makespan and cost. The first phase did the task-resource mapping based on QoS and trust
requirements of the tasks hence took care of security and reliability constraints. The second phase
undertook the multiple rounds of resource allocation to find the most optimal schedule in multi-
cloud infrastructure. The proposed algorithm was simulated to compare with modified ABC
algorithm, modified cuckoo search algorithm, max-min algorithm and min-min task scheduling
algorithm. The results proved to be in favour of the proposed algorithm in terms of makespan,
average resource utilization and cost. The proposed work did not consider deadline constraints of
the task, data-transfer requirements of the task and bandwidth/network-delay of the cloud
infrastructure.

Authors proposed a novel adaptive task scheduling algorithm based on Deep Q-network technique
in (Peng et al. 2020). The proposed online resource scheduling environment handled the trade-off
between minimum energy cost and optimal makespan. The simulation results exhibited the
optimization effects as per the favoured objective. The presented algorithm yet suffered from the
problem of scalability and did not give any weightage to underlying network bandwidth capacity.

Researchers in (Natesan and Chokkalingam 2020) proposed a task scheduling algorithm based on
Grey Wolf optimization methodology that was focused on performance (in terms of makespan)
and cost of the incoming tasks. The proposed algorithm was simulated using Cloudsim toolkit
and achieved better results in terms of lower task completion time and optimal cost. Besides
meeting the objectives, the algorithm also respected the deadlines of the tasks as compared to peer
algorithms but did not consider other constraints such as bandwidth of the channel, energy
consumption etc.

In (Zivkovic et al. 2020) proposed an improved firefly algorithm to optimally balance the
workload among available and required nodes so as to minimize the energy consumption. The
proposed algorithm was compared with LEACH algorithm, firefly algorithm and PSO approaches
using the same network infrastructure. The main focus of the algorithm was towards the direction
of solving clustering problem and skipped few important metrics viz. makespan and cost. A
comprehensive hybrid approach in (Bacanin et al. 2020) proposed a monarch butterfly
optimization algorithm in conjunction with two swarm-intelligence algorithms. The results of
simulation proved that proposed solution is more accurate than other approaches.

Authors in (Ramamoorthy et al. 2021) proposed a novel multi-objective task scheduling algorithm
that adheres to multiple restrictions while meeting the overall objectives of quickest service at
minimal cost. The proposed algorithm was simulated using Cloudsim toolkit (Calheiros and
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Ranjan 2009) and results were compared with existing multi-objective task scheduling algorithms
which turned to be in favour of the proposed solution.

Additionally, a hybrid Bat (swarm-intelligence) algorithm has been used in (Bezdan et al. 2021)
to achieve multiple objectives of minimal makespan and minimal cost. The proposed BAAEQRL
algorithm’s simulated results were compared with peer meta-heuristic algorithms using same
scenarios of synthetic and parallel workload. While the proposed algorithm has totally omitted
bandwidth availability and energy consumption metrics, it managed to surpass other compared
algorithms on makespan and cost metrics.

The research work carried out in this context by various researchers may be outlined as below:
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3. Problem Formulation
In the work done by few authors (Lu and Sun, 2019;Pradeep and Jacob, 2018) have focused on
energy-efficient scheduling. They have also been able to achieve their goals and proved the
efficiency of the algorithms by doing comparison with peer algorithms. But an intense literature
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review clearly indicates that each algorithm has its own set of limitations, which is also evident
from the table constructed above. Some of the proposed algorithms and methods have not
considered the deadlines of the tasks while some others have not considered the reliability factor.
Some of the available studies could not pay due heed to the data transfer cost (Dubey and Sharma
2021; Hussain et al. 2021; Nabi et al. 2022; Peng et al. 2020).

Similarly, most of papers have focused their research work on makespan only (Chaudhary and
Kumar 2018; Dubey et al. 2018). Whereas other metrics viz. average resource utilization, energy
efficiency and cost of execution, deadlines, bandwidth have not been given due consideration.

It is concerning that while existing research on multi-objective task scheduling has aimed to
achieve specific optimization goals, it has often failed to meet other critical quality parameters.
Most of the work done so far has focused on optimizing processor availability and memory
resources, ensuring efficient execution within these constraints. However, very few of these
approaches have taken network latency into account when scheduling tasks. Neglecting this factor
can lead to inefficient job execution, increased delays, and suboptimal performance in distributed
cloud environments. Addressing network latency alongside traditional resource considerations is
crucial for achieving truly efficient and reliable task scheduling.

This paper presents a novel two-stage algorithm for job scheduling in a cloud federation. In the
first stage, the algorithm performs network-latency-aware job allocation, ensuring that jobs are
assigned to appropriate cloud resources based on network conditions. The output of this stage
serves as input for the second stage, which employs a Genetic Algorithm (GA) for optimal
resource allocation. This second stage focuses on minimizing job completion time while
simultaneously optimizing execution costs. By integrating network-awareness in the initial stage
and leveraging GA for cost-effective resource distribution, the proposed approach enhances
scheduling efficiency in multi-cloud environments.

4. Proposed Scheduling Algorithm

A task scheduling and resource selection problem is comprised of mapping ‘n’ applications on
federation of clouds having ‘k’ cloud providers, connected to a meta-broker as shown in Figure 1.
Each provider has ‘r’ types of computational resources along with computational cost of each
resource. The aim of the proposed scheme is to find a schedule that maps each application on
appropriate cloud with optimal cost and execution time considering bandwidth as an important
parameter. Another distinctive feature of the proposed algorithm is it being a two stage algorithm
where output of the first stage acts as an input mechanism for the second stage algorithm.

~ Cloud Federation

| v

= =3
€ AT N e

\ 2 Private Cloud : VA
~ R e g . Cloud Provider 2
Figure 1 Federation of Clouds

Notation:

Let ‘CP’ is a set of m cloud providers, CP= {CP1, CP»,.....,CPm | m>=2} and Pj; is a matrix that
indicates the price per unit of time for using the resource where i represents the cloud provider
(1<=1i1<=m) and j represents resource (1 <=j <=r).
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Let Network_Latency (t, r) represent the network latency for task ‘t” on resource ‘r’ i.e. between
the meta-broker and cloud provider. Network latency depends upon the distance and bandwidth
of the channel from the broker to the cloud provider.

Let T isaset of tasks, T= { T1,T2,.... Tn} that are submitted by various users for execution to the
federation and let Cij indicates the computational cost of executing i*" task on j™ resource type of
the k™ cloud provider. It is defined as:

Cijk = Dijk X Pjk

Where Dij is the time duration for which i task has used the j™" resource type of k™ cloud provider
and Py represents the price of using j™ computational resource of k™ cloud provider.

The proposed Latency-Aware Resource Selection (LA-RS) algorithm intends to optimise the
scheduling of input tasks over a multi-cloud set-up or federation of clouds. Besides being network-
latency aware, it takes into account user’s requirements against multiple criteria - cost and
completion time. Overall, the algorithm consists of three broad steps: 1) collecting the
configurations of data centres and prices of virtual machines offered by participating cloud
providers, 2) use the latency-aware greedy approach to prepare task-datacentre mapping that forms
the initial population for next phase 3) search an optimal schedule that meets minimal cost and
time constraints using genetic algorithm.

The proposed algorithm finds a mapping-vector x for scheduling ‘n’ tasks over the federation with
‘m’ participating clouds having ‘r’ resource types. Mathematically x = (x1, X2, ....... ,Xn) is derived
with the following objectives:

Min (X1 Y51 Xker Cik) covveeeeeeiiii [1]
where Cij is the computational cost of executing i application on j resource type of the k' cloud
provider.

And

ETwt = max rer (O tety Execution_Time(t, r) + Network Latency(t, 1))

Where ET indicates the minimum overall execution time for T tasks on R resources.
The proposed algorithm performs federated resource allocation subject to network restrictions and
mainly works in two phases, where its first phase selects a task from meta-tasks with maximum
Expected Execution Time [EET] to allocate it a computing resource with Minimum Completion
Time [MCT]. For each task ‘t’ from set of tasks T and resource ‘r’ from the set of resources R:
EET (T) = max t € T (Estimated Execution Time of Task t)
ECT (t, r) = Execution Time of t on r + Network Latency (t, r)
Makespan =maxr € R (3t € T(r) ECT (t, 1))

The algorithm determines Estimated Completion Time [ECT] for each task i.e. estimated time that
might be taken by submitted tasks to complete on different available resources. The resource with
the shortest total completion time (including network latency) is then given the task with the
overall maximum estimated execution time. Ultimately, after updating all recent changes in
timings of tasks and resources, the process is repeated until all submitted tasks are completed. The
goal of first phase of algorithm is to reduce the entire makespan, or total time after including
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network-latency. Choosing the resource that takes the least amount of time to complete the largest
task entails picking the fastest resource among those that are accessible.

Algorithm (Phase I)
Input:
o T={tl1,12, .., tn}: SetoftasksT.
e R={rl,r2,.., rm}: Setof available resources R.
e Network Latency(t, r): Network latency for task ‘t’ on resource ‘r’.
e Exec Time(t, r): Execution time of task ‘t” on resource ‘r’.

Output:
o Resource allocation for tasks T and the makespan.

Steps:
1. Initialize:
o Create an empty task-to-resource mapping table.
o Initialize the total completion time of all resources to 0.
2. Phase 1 - Task and Resource Selection:
Repeat until all tasks in T are allocated:
o Compute EET (T): Identify the task ‘t*’ with the maximum expected execution
time.
Compute ECT (tx, r) for all resources ‘r’.
Identify resource r* with the minimum ECT (t*, r) (i.e., MCT(t*)).
Assign t* to r*.
Update the total completion time of r* and the remaining tasks in T.
3. Update Timings:
o After each assignment, update the task timings and resource completion times
based on the latest allocations.
4. Repeat:
o Repeat the above steps until all tasks are assigned to resources.

O O O O

The mapping thus produced after completion of first phase serves as initial population to the
subsequent phase of the proposed algorithm. The initial population in a genetic algorithm (GA)
plays a crucial role in the algorithm's performance and the efficiency with which it explores the
solution space. The initial population impacts the genetic algorithm since a diverse initial
population allows the algorithm to explore a wider range of potential solutions early on. This helps
in avoiding premature convergence to suboptimal solutions and encourages the discovery of better
solutions over time. A well-chosen initial population can help the genetic algorithm converge
faster by providing a solid starting point. If the population already contains individuals that are
relatively close to optimal solutions, the search can progress quickly. So, in this paper, heuristic
Initialization strategy is being followed since using domain-specific knowledge to initialize the
population with individuals that are likely to be closer to the optimal solution can significantly
improve performance. The novel feature of the algorithm is that it considers not only the execution
time while allocating the task to various providers but also the network latency of the underlying
channel.

The second phase of proposed algorithm applies genetic algorithm that uses the output of first
phase as initial population and aims to optimize two objectives i.e. to minimize completion cost
and the overall execution time. The algorithm fetches the information about type, price and other
physical configuration of various types of virtual machines available with all Cloud providers.
This information helps the meta-broker to optimize the cost of execution. The meta-broker is also
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capable of periodically collecting and monitoring the status of the bandwidth and latency of the
channel between itself and cloud providers. The size of the population depends on the number of
existing resources (both physical and virtual), virtual machine types per provider and number of
input tasks. The algorithm forms a new population using crowding mechanism (to ensure
diversity) from the initial population by selecting fittest chromosomes (those who dominate
according to objective functions 1 and 2 as described below) using a Roulette method.

The fitness of an individual (chromosome) is determined as:
Fitness (x) = w1 - 1/C total + w2 - 1/T total

Where w1l and w2 are weights assigned to cost and runtime, respectively, based on their
importance. With the aim to explore more possible hosts with better fitness, this new population
is recombined using a uniform crossover. This operation requires at least two input tasks to be
scheduled. This operation randomly selects two cutting points in population and all of the input
tasks are swapped between these cutting points. It then performs mutation (if n>=3) that randomly
selects two tasks from the population and swaps them in order to improve the fitness of individuals.

After that, the algorithm iterates until paretoSet (solutions) do not improve between iteration steps.
At each iteration, an attempt is made to improve the fitness of the individuals in the population. It
is obvious that the quality of the algorithm’s interim results cannot decrease while iterating
because the worst results are removed at each step. If the pareto set does not change in a number
of subsequent iterations, the algorithm terminates. Furthermore, to provide an upper bound for the
scheduler’s runtime, there is a limit of iterations, which depends on the population size. Fitness
means the quality of mapping with respect to cost and runtime. Thereby, both runtime and cost
are aggregated over all iterations. The cost and runtime of each step in turn depends on the
underlying resource (since VMs prices vary between different providers) and the geographical
location of the provider.

Algorithm (Phase I1)
Input:
o Output of Phase 1: Initial resource-task mapping.
o T={t1,12,...,tn}: Set of tasks T.
e R={rl,r2, .., rm}: Setofavailable resources R.
e VM configurations, pricing, bandwidth, and latency details.
Output:
o Optimized resource-task mapping minimizing cost and execution time.
Steps:
1. Initialization:
o Generate the initial population using heuristic initialization (Phase 1).
o Compute objective functions and fitness for each individual.
2. Main Loop:
Repeat until the pareto set does not improve or the iteration limit is reached:

o Selection: Apply Roulette Wheel Selection to choose the fittest chromosomes.
Crossover: Perform uniform crossover to generate new individuals.
Mutation: If N>3, mutate a subset of the population to ensure diversity.
Fitness Evaluation: Re-compute fitness for the new population.
Update Pareto Set: Add non-dominated solutions to the pareto set and remove
dominated solutions.

3. Termination:
o Stop the algorithm if no improvement is observed in the pareto set for k
consecutive iterations or the iteration limit is reached.

O O O O
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5 Experimental Evaluations
In this section, the details of metrics that are used for gauging the efficiency of proposed algorithm
and detailed experiment setup is presented:

5.1 Performance metric

As a measure of performance, total cost and total time for complete execution of tasks under
varying workload conditions have been used as metrics for analysis in controlled simulation
environment. We computed the total time and total cost of execution of a workflow using proposed
Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource Selection (BRS)
algorithm that is based on minimum completion time by selecting a resource with maximum cost.

5.2 Data and Implementation

To simulate proposed Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource
Selection (BRS) algorithm, SmartFed simulator was used. A federation has been simulated with
three geographically separated Cloud Providers. The cost of using their datacentres varies from
provider to provider and is taken akin real life examples such as Amazon, Rackspace and Google.
Table 1 depicts the details of cost assumed for each datacentre in terms of US dollar ($).

Table 1: Cost for usage of resources for each Datacentre

First Data Center | Second Data Center | Third Data Center
(cost in $) (cost in $) (cost in $)
Bandwidth ~64Mbps ~48Mbps ~56Mbps
Small VM (per Hour) | 1.70 1.67 1.8
Large VM  (per|3.14 3.84 3.16
Hour)
Memory cost(per GB | 0.05 0.05 0.05
per hour)

Host machines of these providers are connected to each other and meta-broker via high-speed
links having a bandwidth of 64 Mbps. Storage capacity of each host is 10 TB and RAM is 8 GB
and each host is equipped with 8 PEs. The processing capability of resources was confined to be
same for evaluating both algorithms. Other underlying assumptions in these experiments are that
in each of the datacentre, number of hosts, number of PEs and provisioning policies for VM, RAM
and bandwidth are kept uniform. After input tasks are submitted, the meta-broker returns a
mapping solution allocating each task to a particular provider. In this paper, allocation schemes
have been implemented using SmartFed federation simulator.

6. Results and Discussion

Table 2 depicts the details of output achieved from the simulation for Latency-Aware Resource
Selection (LA-RS) algorithm and Best Resource Selection algorithms. The table lists the cost time
and total cost of execution of tasks on the federation of clouds.

Table 2: Total Cost and Total Time of executing input tasks in a federation of three Cloud
Providers in three different workload scenarios
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Scaling the Input Tasks from 10 to 500000
10 Input Tasks to 25000 Input Tasks to 500000 Input Tasks to
Federation Federation Federation
Total Cost Total Time |TotalCost Total Time |TotalCost Total Time
| LA-RS ALGO 1.59678 30.6 39690 765885 756250 15388225
| BRS ALGO 1.93543 31.3 48385.75 783300 967500 15671329
|% Change 21.2083067  2.2875817| 21.9091711 2.27384007| 27.9338843 1.83974435

Figure 1: Cost Comparison for 10 Tasks Figure 2: Time Comparison for 10 Tasks

Figure 3: Cost Comparison for 25,000 Tasks Figure 4: Time Comparison for 25,000 Tasks
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Above figures depict graphically the results obtained experimentally and shows the comparison
of Latency-Aware Resource Selection (LA-RS) algorithm outperforms Best Resource Selection
algorithm distinctively. Figure 1, Fig. 3 and Fig. 5 display the comparison of cost efficiency of
proposed LA-RS algorithm and BRS algorithm for 10, 25,000, and 500,000 tasks, showing that
LA-RS algorithm consistently incurs a lower total cost, with the cost gap widening as volume of
tasks increases. For 10 tasks, LA-RS algorithm's cost is about $1.75, while BRS algorithm is $2.0,
making LA-RS algorithm 12.5% more cost-efficient. At 25,000 tasks, LA-RS algorithm costs
40,000, whereas BRS algorithm reaches 50,000, offering a 20% cost reduction. This trend
amplifies for 500,000 tasks, where LA-RS algorithm incurs 750,000, while BRS algorithm nears
1,000,000, meaning LA-RS algorithm is 25% cheaper. The increasing cost difference suggests
that BRS algorithm scales less efficiently, likely due to additional overhead or inefficiencies at
higher workloads. The trade-off is that while both algorithms may perform similarly for small
workloads, LA-RS algorithm becomes significantly more cost-effective as task volume increases,
making it the preferred choice for large-scale scheduling in cloud computing or distributed
systems.
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Fig. 2, Fig. 4 and Fig. 6 depict the makespan for both resource allocation algorithms in all three
workload scenarios. An insight into these figures show that out-performance of proposed Latency-
Aware Resource Selection (LA-RS) algorithm over Best Resource Selection algorithm is evident
on makespan metric also. But the improvement is not by huge margin. As the makespan in first
workload scenario (10 tasks) is upgraded by as low as close to 2%. Moreover, as the numbers of
input tasks are increased in second and third workload scenarios, the makespan of proposed LA-
RS algorithm is again improved marginally only i.e. to the tune of 2%. It clearly indicates that as
the workload is scaled up, the proposed algorithm sustains its trend of superseding nature of lower
makespan than BRS algorithm.

167 Figure 7: Cost & Time Trend Across Task Sizes
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Figure 7 illustrates the trend in total cost and makespan for both algorithms under analysis, clearly
highlighting the advantages of the proposed algorithm. This benefit is particularly evident due to
its enhanced consideration of bandwidth availability when selecting resources in the initial stage
of the algorithm.

7.Conclusion

The proposed Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource Selection
(BRS) algorithm evaluated experimentally in this paper have shown that proposed Latency-Aware
Resource Scheduling (LA-RS) algorithm gives the lower cost for execution of tasks since this
algorithm not only exploits the cheaper datacentre but also tries to optimize the makespan
simultaneously. As optimal (low cost and least time) provider’s datacentre runs out of resources,
algorithm selects the next cheaper provider’s datacentre to execute remaining tasks. As the
resources are scaled up in the cheapest datacentre, the total cost of execution of tasks decreases
more steeply as compared to Best Resource Selection algorithm. Amongst the three workload
situations, it has been observed that proposed algorithm utilized resources in a more effective
manner as compared to BRS algorithm in all workload scenarios. Rather its performance is
accelerated as the input tasks are scaled up. Conclusively, adopting LA-RS algorithm for high-
volume tasks could lead to substantial cost savings (20-25%) and a marginal demotion in
makespan too, reinforcing its suitability for large-scale operational deployments.
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