
Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3097 http://jier.org

Latency-Aware Task Scheduling and Resource Selection using two

phase Genetic Algorithm in Federation of Clouds

Bharat Chhabra

Research Scholar,

Computer Science and Engineering Department,

 MAIT, Maharaja Agrasen University

bharat.pnp@gmail.com

Dr.Pankaj Nanglia

Professor, Maharaja Agrasen University

nanglia.pankaj@gmail.com

Amit Dhiman

Consultant

HCL America, Frisco, Texas, USA

amittdhiman91@gmail.com

Dr. Neha Kishore

Associate Professor

Computer Science and Engineering Department,

MAIT, Maharaja Agrasen University, HP 174 103, India

nehakishore.garg@gmail.com

ABSTRACT

Federation of cloud is a collaborative model in which multiple cloud providers participate by

sharing resource, services and data across their platform. This collaboration is aimed to create a

unified system where user can benefit from multiple cloud providers while maintain the

independence of each participating cloud. One of the key component for sustainability and

successful operation of a federation of clouds is its efficient resource selection model. Resource

selection has always been a challenge in cloud computing and is even more challenging in a

Federation or multi-cloud setup. Researchers have dealt with this problem in various ways. Most

of these existing algorithms in consider processor and memory needs without considering the

bandwidth requirements of an application. In this paper, two-stage Latency-Aware Resource

Selection (LA-RS) algorithm has been proposed to obtain a balance between various confronting

objectives including Quality of Service (QoS), cost and completion time of applications. The first

phase of the proposed algorithm figures out the top corresponding computing resources for the

input tasks that satisfy their QoS requirements including cost and also considers network-latency

in a federation or multi-cloud environment; the subsequent phase applies genetic algorithm that

iteratively re-allocates the input tasks to optimize tasks execution time and cost. The comparison

of proposed algorithm with existing algorithm clearly exhibits that along with considering the

bandwidth of the underlying network, proposed algorithm achieves the objectives of optimal

minimum execution time as well as optimal minimum cost.

1. Introduction

Federation of clouds presents an environment to consumers in which multiple cloud providers

participate in order to offer services to its users (Agostinho et al. 2011). It generally involves a

huge amount of data transmission. As federation of clouds presents a promise of offering a set of

huge infrastructure services, platform services and application based services as on-demand

service over Internet, its success largely depends on the quality of underneath network. The need

of numerous data exchanges among physical or virtual resources in data-intensive scientific

workflow applications also necessitates an efficient task-scheduling and resource selection scheme

that carefully optimizes various objectives of scheduling and meets deadline constraints

mailto:bharat.pnp@gmail.com
mailto:nanglia.pankaj@gmail.com
mailto:nehakishore.garg@gmail.com

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3098 http://jier.org

(Malawski et al. 2012; Nayak and Tripathy 2018), optimizes cost (Moschakis and Karatza 2012)

and conserves energy etc. Since, applications scheduled without considering the available

bandwidth may impede performance execution, resulting in wastage of resources. Also a

scheduling algorithm that does not consider bandwidth as a parameter may schedule an application

to a cloud provider through a channel having low availability of bandwidth while another channel

with better bandwidth may remain unused.

Many Researchers have investigated the problem of scheduling the tasks and resource allocation

in clouds and federation of clouds from various perspectives such as execution cost, makespan,

energy, reliability and fault tolerance etc. Few researchers have developed the algorithms with

only one objective in focus whereas a bunch of them have considered bi-objective algorithms

based on meta-heuristic approaches (Heba 2024; Mezmaz et al. 2011).

In the recent past, many strategies and algorithms have been proposed by researchers (Heba 2024;

Khan and Ahmad 2009; Kofahi et al. 2019) to optimize the task scheduling and resource selection

in a federation of clouds. But unfortunately, most of these algorithms are centred on allocation of

processor and memory to various applications and ignore the important factor of bandwidth

requirements. The contribution of this paper is a multi-objective resource selection algorithm that

takes into account the bandwidth of the links connecting different providers’ domains in order to

avoid quality of service degradation. The rest of the paper is organized as follows. Section 2

represents the related work in this domain. Section 3 involves formulation of problem and section

4 proposes the latency-aware resource selection algorithm. Section 5 and 6 experimentally

evaluate the proposed algorithm, results received and discussion based upon it. Section 7 presents

a conclusion.

2. Related Work

A heuristic based critical greedy algorithm was proposed for IaaS clouds to achieve minimum end

to end delay besides keeping the cost under user specified constraint in paper (Malawski et al.

2012).

A novel Min-Min algorithm is proposed (Huankai Chen et al. 2013) to schedule such applications

on clouds that involve considerable network communication. The proposed algorithm is capable

of adapting to the change of network transmission speed autonomously. Authors (Mezmaz et al.

2011) developed bi-objective dynamic level scheduling algorithm and bi-objective genetic

algorithm for a federation of clouds. Both of these algorithms can trade off execution time against

the reliability of the application.

Moreover, a cooperative game theory based solution has been proposed (Khan and Ahmad 2009)

for task scheduling in computational grids. Their algorithm minimizes the energy consumption

and makespan while meeting the deadline constraints. (Mezmaz et al. 2011) proposed a parallel

bi-objective genetic algorithm for cloud computing system that focused on minimizing the energy

consumption and makespan. The algorithm was based on cooperative island farmer-worker model

and reported a non-dominated Pareto set of scheduling solutions.

Additionally a variety of eight heuristics for energy consumption aware task scheduling in large-

scale distributed systems (Lindberg et al. 2012) has been presented. Six of these heuristics were

greedy heuristics and two heuristics were based on genetic algorithm. All of these strategies tried

to achieve an optimal solution under deadline and memory restrictions. Another task scheduling

model for cloud computing based on multi-objective genetic algorithms has been proposed

in(Behzad, Fotohi, and Effatparvar 2013). The proposed task scheduling method attempts to

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3099 http://jier.org

minimize the energy consumption, maximizes the profits while meeting the deadline constraints

of the application.

A heterogeneous Budget constrained scheduling algorithm has been proposed in (Arabnejad and

Barbosa 2014) for service-oriented computing that maintains the execution cost under pre

specified budget and also minimizes the execution time of the application to maintain the lower

makespan.

Researchers in (Dorronsoro et al. 2014) presented a two level strategy focused on multi-objective

problem of scheduling large workloads of parallel applications in multi-core distributed systems.

Their objectives were to optimize the makespan and energy consumption. Authors also evaluated

few QoS metrics that helped them to optimize their objective functions besides maximizing the

Quality of Service.

Authors (Ebadifard and Babamir 2018) presented Round-Robin (RR) and Particle Swarm

Optimization (PSO) hybrid algorithm focused on minimizing the execution cost but skipping the

cost and other QoS parameters altogether. The study in (Abdulhamid et al. 2018) attempted to

achieve two optimization objectives of minimum execution cost and minimum execution time in

cloud computing environment. The major characteristic of the presented algorithm is that it also

considers the fault and recovery time in case of failure. The paper (Iturriaga et al. 2016) undertakes

the scheduling in a federation of distributed data centres as a multi constrained and bi-objective

problem and intends to optimize cost and energy. The work is oriented to find Pareto optimal

schedules i.e. where none of the scheduling order can substantially dominate the other schedules

with lower cost and good bandwidth. However, their algorithm did not attend the bandwidth

requirements of tasks.

Research work proposed in (Ebadifard and Babamir 2018) and (Lu and Sun, 2019) focused on

balancing the load distribution of incoming tasks to attain higher average resource utilization ratio

but their algorithms suffered from lower QoS, High Cost and low fault tolerance. Research study

in (Praveen, Rao, and Janakiramaiah 2018) proposed unique meta-heuristic solutions for task

scheduling using social group optimization and SJF algorithm but also concluded that not a single

proposed technique is suitable to all variations of workload. Research work in (Dubey, Kumar,

and Sharma 2018) modified the well-established conventional task scheduling algorithm namely

Modified Heterogeneous Earliest Finish Time (Modified HEFT) that was able to handle only static

workload.

Various researchers have tried to solve the problem of resource selection and developed algorithms

in cloud computing environment. Their studies have categorized various proposed resource

selection algorithms in many different classes such as static algorithms (dealing with

predetermined requests of resources) /dynamic algorithms (Ding et al. 2020; Nabi, Ibrahim, and

Jimenez 2021), (Chhabra and Gupta 2024) (dealing with request for varying quantity of resources),

batch-mode (dealing with a bunch of tasks together) /online algorithms (dealing with interactive

task requests), pre-emptive or non-pre-emptive algorithms and centralized or distributed

algorithms etc. one more categorization is based on the characteristics of the incoming tasks or on

the characteristics of the data-centre of provider (Cheng, Li, and Nazarian 2018; Mishra et al.

2018; Wu and Wang 2018). Here data-centre characteristics represents infrastructure attributes of

the provider viz. computational capabilities of virtual machines, size of primary memory, available

bandwidth etc. The cloudlets/tasks characteristics includes the resource requirements of the

tasks/cloudlets viz. memory requirements, QoS required, bandwidth required amongst others.

In research work (Pradeep and Jacob 2018), researchers proposed a task scheduling algorithm that

combined the merits of cuckoo search and gravitational search algorithms and overcome their

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3100 http://jier.org

shortcomings. The proposed solution was compared with GSA, GA and PSO algorithms. The

results proved that the proposed hybrid algorithm performed better on various metrics. The study

evaluated the proposed algorithm on cost/profit and energy metrics whereas few important aspects

of bandwidth/network latency and makespan have not been attended. One more cloudy-

gravitational search algorithm (CGSA) for scheduling the tasks was proposed in (Chaudhary and

Kumar 2018) with an objective to achieve lower makespan but it also incurred high cost and low

QoS to do so. Whereas a study in(Wei and Zeng 2019) proposed a novel idea of hybrid differential

parallel computing to process the dynamic incoming tasks on available resources to maintain low

energy consumption but with a trade-off of high overhead and low Average Resource Utilization

(ARU).

Research work in (Dubey and Sharma 2021) proposed a novel PSO based algorithm that has the

dual properties of chemical reaction and particle swarming optimization both. The algorithm

produces the set of optimal sequence depending upon the deadline and it proved to enhance the

cost, makespan and energy-efficiency. The results were compared with existing peer category

algorithms using CloudSim toolkit and an average improvement of 1 to 6 percent in makespan and

1 to 9 percent in energy-efficiency was claimed. The authors did not attend to the bandwidth, load

balancing, and lowering the task rejection ratio.

Strategies of Linear Descending and Adaptive Inertia Weight that is based on providing an

appropriate inertia weight was introduced in (Nabi et al. 2022) that adds feature of adaptability to

their PSO algorithm. Due to this, the algorithm behaves optimally and attains the improvement of

12% to 60 % in makespan and average resource utilization. The algorithm fails to respond to

delay-sensitive tasks and also did not attend to the requirements of bandwidth.

Authors in (Singh et al. 2021) have presented an insight on six major meta-heuristic algorithms

that are nature-inspired. They also presented the comparison of these algorithms based on few

metrics such as makespan, average resource utilization. The algorithms were ACO, PSO, GA,

ABC, C(crow)SA, P(penguin)SO algorithm. The experimental comparisons of these algorithms

proved that Crow Search algorithm produces the most optimal schedule to attain best makespan

and average resource utilization and this algorithm is closely followed by Penguin Search

algorithm.

(Houssein et al. 2021) presented the review of task scheduling algorithms that are based on all

major meta-heuristics scheduling techniques viz. Evolutionary algorithms, swarm based

scheduling algorithms, emerging scheduling algorithms and hybrid meta-heuristic algorithms.

Authors also categorized the various task scheduling problems according to single-

objective/multi-objective problems and restrictions such as deadline etc. The study revealed

various challenges associated with all categories of algorithms and their tentative solutions also.

The review presented in this paper suggest that majority of the work has been carried out

considering single objective (such as scalability, throughput, reliability etc.) as a metric for

resource selection whereas multi-objective algorithms are much less in number hence can be

addressed in future work.

Furthermore, a two-stage task scheduling algorithm (EPETS- Energy and Performance Efficient

Task Scheduling Algorithm) has been mentioned in (Hussain et al. 2021) that deals with lowering

the execution time while meeting the deadlines in the first stage and to do the resource-task

mapping while meeting the objective of lower energy-consumption in the second stage. Their

research suggested to use energy-efficient task priority system for scheduling the tasks to achieve

true balance between energy-consumption and efficient task scheduling. Their suggestion also

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3101 http://jier.org

proved to attain the stated objectives when compared with existing energy-efficient algorithms

using simulation.

(Abualigah and Alkhrabsheh 2022) proposed a novel hybrid task scheduling algorithm that

combines the features of multi-verse optimizer and Genetic algorithm. The proposed algorithm is

focused to improve the rate of transfer of tasks on the cloud network and thus improving the

performance in the initial phase. The proposed algorithm undertook the decision of task-transfer

depending on various task-specific parameters such as size of task, number of tasks, number of

VMs, capacity etc. The proposed solution was simulated using MATLAB tool and proved to

optimize the performance even with large task sizes hence scalable. The proposed solution did not

attend the various constraints such as meeting deadlines or bandwidth.

A separate literature discussed in (Zhu et al. 2021), a two phase task scheduling algorithm has

been presented that did the task-resource mapping in first phase (in lines with the requirements of

security and reliability) and optimization in the second phase of the algorithm to optimize the

makespan and cost. The first phase did the task-resource mapping based on QoS and trust

requirements of the tasks hence took care of security and reliability constraints. The second phase

undertook the multiple rounds of resource allocation to find the most optimal schedule in multi-

cloud infrastructure. The proposed algorithm was simulated to compare with modified ABC

algorithm, modified cuckoo search algorithm, max-min algorithm and min-min task scheduling

algorithm. The results proved to be in favour of the proposed algorithm in terms of makespan,

average resource utilization and cost. The proposed work did not consider deadline constraints of

the task, data-transfer requirements of the task and bandwidth/network-delay of the cloud

infrastructure.

Authors proposed a novel adaptive task scheduling algorithm based on Deep Q-network technique

in (Peng et al. 2020). The proposed online resource scheduling environment handled the trade-off

between minimum energy cost and optimal makespan. The simulation results exhibited the

optimization effects as per the favoured objective. The presented algorithm yet suffered from the

problem of scalability and did not give any weightage to underlying network bandwidth capacity.

Researchers in (Natesan and Chokkalingam 2020) proposed a task scheduling algorithm based on

Grey Wolf optimization methodology that was focused on performance (in terms of makespan)

and cost of the incoming tasks. The proposed algorithm was simulated using Cloudsim toolkit

and achieved better results in terms of lower task completion time and optimal cost. Besides

meeting the objectives, the algorithm also respected the deadlines of the tasks as compared to peer

algorithms but did not consider other constraints such as bandwidth of the channel, energy

consumption etc.

In (Zivkovic et al. 2020) proposed an improved firefly algorithm to optimally balance the

workload among available and required nodes so as to minimize the energy consumption. The

proposed algorithm was compared with LEACH algorithm, firefly algorithm and PSO approaches

using the same network infrastructure. The main focus of the algorithm was towards the direction

of solving clustering problem and skipped few important metrics viz. makespan and cost. A

comprehensive hybrid approach in (Bacanin et al. 2020) proposed a monarch butterfly

optimization algorithm in conjunction with two swarm-intelligence algorithms. The results of

simulation proved that proposed solution is more accurate than other approaches.

Authors in (Ramamoorthy et al. 2021) proposed a novel multi-objective task scheduling algorithm

that adheres to multiple restrictions while meeting the overall objectives of quickest service at

minimal cost. The proposed algorithm was simulated using Cloudsim toolkit (Calheiros and

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3102 http://jier.org

Ranjan 2009) and results were compared with existing multi-objective task scheduling algorithms

which turned to be in favour of the proposed solution.

Additionally, a hybrid Bat (swarm-intelligence) algorithm has been used in (Bezdan et al. 2021)

to achieve multiple objectives of minimal makespan and minimal cost. The proposed BAAEQRL

algorithm’s simulated results were compared with peer meta-heuristic algorithms using same

scenarios of synthetic and parallel workload. While the proposed algorithm has totally omitted

bandwidth availability and energy consumption metrics, it managed to surpass other compared

algorithms on makespan and cost metrics.

The research work carried out in this context by various researchers may be outlined as below:

Reference

No.

Year
Algorithm/Technique

used

Merits of the

Algorithm -

(Parameters

optimized)

Limitations Tool used
M

a
k

e
sp

a
n

D
e
a
d

li
n

e

C
o
st

E
n

e
r
g
y

B
a
n

d
w

id
th

O
th

e
r
s

(Ebadifard

and Babamir

2018)

2017
PSO using Load

Balancing Technique
Y - - - - Y

 QoS, High Cost and low

fault tolerance
CloudSim

(Lu and Sun,

2019)
2017

Energy efficient

Resource-Aware Load-

Balancing Clonal

Selection Algorithm

- - - Y - - Not scalable CloudSim

(Praveen et al.

2018)
2017

Social Group

Optimization and SJF
Y - - - - Y

Not a single proposed

technique is suitable to all

variations of workload

CloudSim

(Dubey et al.

2018)
2017

Modified Heterogeneous

Earliest Finish Time

(Modifies HEFT)

Y - - - - - Static workload CloudSim

(Wu and

Wang 2018)
2018

multi-model estimation of

distributed algorithm
Y - - Y - -

Makespan and energy

consumption is

compromised

C on Linux

(Cheng et al.

2018)
2018

Deep Reinforcement

Learning-Based Resource

Provisioning and Task

Scheduling

- - - Y - -
High overhead and

priorities are ignored.
-

(Mishra et al.

2018)
2018

Energy-Efficient VM-

Placement
- - - Y - Y

Cost, QoS parameters are

ignored.
Cloudsim

(Pradeep and

Jacob 2018)
2018 CGSA scheduler Y Y

Did not consider the

trade-off costs.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3103 http://jier.org

(Chaudhary

and Kumar

2018)

2018
Cloudy-Gravitational
Search Algorithm

Y - - - - - High cost and low QoS CloudSim

(Wei and

Zeng 2019)
2019

Hybrid differential

parallel computing
Y - - - - Y

High overhead and low

ARU

C++ and

MATLAB 7

(Dubey and

Sharma 2021)
2021

PSO based Task

Scheduling
Y - Y Y - -

No consideration to

bandwidth, load

balancing and task

rejection

CloudSim

(Nabi et al.

2022)
2022

Adaptive PSO based Task

Scheduling
Y - - - - Y

Not considered delay-

sensitive tasks and

bandwidth needs

Eclipse and

CloudSim

(Hussain et al.

2021)
2021

Two stage EPETS-

Energy and Performance

Efficient Task Scheduling

Algorithm

Y Y - Y - -

High cost and no

consideration of

bandwidth requirements

of tasks

-

(Abualigah

and

Alkhrabsheh

2022)

2022

Hybrid Multi-verse

Genetic Task Scheduling

algorithm

Y - - - Y Y

Meeting deadlines not

given weightage and

other QoS miss.

MATLAB

(Zhu et al.

2021)
2021

Two Phase Task

Scheduling algorithm with

security and reliability

Y - Y - - Y

High overhead leads to

deadlines miss and

bandwidth needs.

-

(Peng et al.

2020)
2020

Deep Q-Network

scheduler
Y Y

Not scalable and

Bandwidth needs were

ignored

(Natesan and

Chokkalinga

m 2020)

2020 Grey-Wolf optimization Y Y

Resource utilization is

lower and Deadlines were

ignored

(Zivkovic et

al. 2020)
2020

Modified Firefly

optimization
 Y Y

Did not focus on

makepan/cost
IntelliJ IDE

(Bacanin et al.

2020)
2020

Hybrid Monarch Butterfly

optimization
Y Y

Skipped to attend

constraints or faults.
IntelliJ IDE

(Ramamoorth

y et al. 2021)
2021

MCAMO: multi

constraint aware multi-

objective resource

scheduling optimization

Y Y

Not all mentioned

constraints were adhered

to while optimization of

simultaneous objectives.

CloudSim

(Bezdan et al.

2021)
2022 Hybrid Bat algorithm Y Y

Low ARUs and no

specific constraints were

adhered to.

CloudSim

(Chaudhary

and Kumar

2019)

2018
Genetic Gravitational

Search Algo (GSA)
Y - Y - - -

Fixed Bandwidth

Assumption, Single

Workflow assumption

C++ Coding

on Linux

3. Problem Formulation

In the work done by few authors (Lu and Sun, 2019;Pradeep and Jacob, 2018) have focused on

energy-efficient scheduling. They have also been able to achieve their goals and proved the

efficiency of the algorithms by doing comparison with peer algorithms. But an intense literature

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3104 http://jier.org

review clearly indicates that each algorithm has its own set of limitations, which is also evident

from the table constructed above. Some of the proposed algorithms and methods have not

considered the deadlines of the tasks while some others have not considered the reliability factor.

Some of the available studies could not pay due heed to the data transfer cost (Dubey and Sharma

2021; Hussain et al. 2021; Nabi et al. 2022; Peng et al. 2020).

Similarly, most of papers have focused their research work on makespan only (Chaudhary and

Kumar 2018; Dubey et al. 2018). Whereas other metrics viz. average resource utilization, energy

efficiency and cost of execution, deadlines, bandwidth have not been given due consideration.

It is concerning that while existing research on multi-objective task scheduling has aimed to

achieve specific optimization goals, it has often failed to meet other critical quality parameters.

Most of the work done so far has focused on optimizing processor availability and memory

resources, ensuring efficient execution within these constraints. However, very few of these

approaches have taken network latency into account when scheduling tasks. Neglecting this factor

can lead to inefficient job execution, increased delays, and suboptimal performance in distributed

cloud environments. Addressing network latency alongside traditional resource considerations is

crucial for achieving truly efficient and reliable task scheduling.

This paper presents a novel two-stage algorithm for job scheduling in a cloud federation. In the

first stage, the algorithm performs network-latency-aware job allocation, ensuring that jobs are

assigned to appropriate cloud resources based on network conditions. The output of this stage

serves as input for the second stage, which employs a Genetic Algorithm (GA) for optimal

resource allocation. This second stage focuses on minimizing job completion time while

simultaneously optimizing execution costs. By integrating network-awareness in the initial stage

and leveraging GA for cost-effective resource distribution, the proposed approach enhances

scheduling efficiency in multi-cloud environments.

4. Proposed Scheduling Algorithm

A task scheduling and resource selection problem is comprised of mapping ‘n’ applications on

federation of clouds having ‘k’ cloud providers, connected to a meta-broker as shown in Figure 1.

Each provider has ‘r’ types of computational resources along with computational cost of each

resource. The aim of the proposed scheme is to find a schedule that maps each application on

appropriate cloud with optimal cost and execution time considering bandwidth as an important

parameter. Another distinctive feature of the proposed algorithm is it being a two stage algorithm

where output of the first stage acts as an input mechanism for the second stage algorithm.

Figure 1 Federation of Clouds

Notation:

Let ‘CP’ is a set of m cloud providers, CP= {CP1, CP2,…..,CPm | m>=2} and Pij is a matrix that

indicates the price per unit of time for using the resource where i represents the cloud provider

(1<= i <= m) and j represents resource (1 <= j <= r).

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3105 http://jier.org

Let Network_Latency (t, r) represent the network latency for task ‘t’ on resource ‘r’ i.e. between

the meta-broker and cloud provider. Network latency depends upon the distance and bandwidth

of the channel from the broker to the cloud provider.

Let T is a set of tasks, T= { T1,T2,.... Tn } that are submitted by various users for execution to the

federation and let Cijk indicates the computational cost of executing ith task on jth resource type of

the kth cloud provider. It is defined as:

Cijk = Dijk x Pjk

Where Dijk is the time duration for which ith task has used the jth resource type of kth cloud provider

and Pjk represents the price of using jth computational resource of kth cloud provider.

The proposed Latency-Aware Resource Selection (LA-RS) algorithm intends to optimise the

scheduling of input tasks over a multi-cloud set-up or federation of clouds. Besides being network-

latency aware, it takes into account user’s requirements against multiple criteria - cost and

completion time. Overall, the algorithm consists of three broad steps: 1) collecting the

configurations of data centres and prices of virtual machines offered by participating cloud

providers, 2) use the latency-aware greedy approach to prepare task-datacentre mapping that forms

the initial population for next phase 3) search an optimal schedule that meets minimal cost and

time constraints using genetic algorithm.

The proposed algorithm finds a mapping-vector x for scheduling ‘n’ tasks over the federation with

‘m’ participating clouds having ‘r’ resource types. Mathematically x = (x1, x2, ……., xn) is derived

with the following objectives:

 min (∑ ∑𝑟
𝑗=1 ∑ 𝐶𝑚

𝑘=1
𝑛
𝑖=1 ijk) .……………………[1]

where Cijk is the computational cost of executing ith application on jth resource type of the kth cloud

provider.

And

ETtotal = max r∈R (∑ t∈T(r) Execution_Time(t, r) + Network_Latency(t, r))

.……………………[2]

Where ET indicates the minimum overall execution time for T tasks on R resources.

The proposed algorithm performs federated resource allocation subject to network restrictions and

mainly works in two phases, where its first phase selects a task from meta-tasks with maximum

Expected Execution Time [EET] to allocate it a computing resource with Minimum Completion

Time [MCT]. For each task ‘t’ from set of tasks T and resource ‘r’ from the set of resources R:

EET (T) = max t ∈ T (Estimated Execution Time of Task t)

ECT (t, r) = Execution Time of t on r + Network Latency (t, r)

Makespan = max r ∈ R (∑t ∈ T(r) ECT (t, r))

The algorithm determines Estimated Completion Time [ECT] for each task i.e. estimated time that

might be taken by submitted tasks to complete on different available resources. The resource with

the shortest total completion time (including network latency) is then given the task with the

overall maximum estimated execution time. Ultimately, after updating all recent changes in

timings of tasks and resources, the process is repeated until all submitted tasks are completed. The

goal of first phase of algorithm is to reduce the entire makespan, or total time after including

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3106 http://jier.org

network-latency. Choosing the resource that takes the least amount of time to complete the largest

task entails picking the fastest resource among those that are accessible.

Algorithm (Phase I)

Input:

• T = {t1, t2, ..., tn}: Set of tasks T.

• R = {r1, r2, ..., rm}: Set of available resources R.

• Network_Latency(t, r): Network latency for task ‘t’ on resource ‘r’.

• Exec_Time(t, r): Execution time of task ‘t’ on resource ‘r’.

Output:

• Resource allocation for tasks T and the makespan.

Steps:

1. Initialize:

o Create an empty task-to-resource mapping table.

o Initialize the total completion time of all resources to 0.

2. Phase 1 - Task and Resource Selection:

Repeat until all tasks in T are allocated:

o Compute EET (T): Identify the task ‘t*’ with the maximum expected execution

time.

o Compute ECT (t∗, r) for all resources ‘r’.

o Identify resource r* with the minimum ECT (t*, r) (i.e., MCT(t*)).

o Assign t* to r*.

o Update the total completion time of r* and the remaining tasks in T.

3. Update Timings:

o After each assignment, update the task timings and resource completion times

based on the latest allocations.

4. Repeat:

o Repeat the above steps until all tasks are assigned to resources.

The mapping thus produced after completion of first phase serves as initial population to the

subsequent phase of the proposed algorithm. The initial population in a genetic algorithm (GA)

plays a crucial role in the algorithm's performance and the efficiency with which it explores the

solution space. The initial population impacts the genetic algorithm since a diverse initial

population allows the algorithm to explore a wider range of potential solutions early on. This helps

in avoiding premature convergence to suboptimal solutions and encourages the discovery of better

solutions over time. A well-chosen initial population can help the genetic algorithm converge

faster by providing a solid starting point. If the population already contains individuals that are

relatively close to optimal solutions, the search can progress quickly. So, in this paper, heuristic

Initialization strategy is being followed since using domain-specific knowledge to initialize the

population with individuals that are likely to be closer to the optimal solution can significantly

improve performance. The novel feature of the algorithm is that it considers not only the execution

time while allocating the task to various providers but also the network latency of the underlying

channel.

The second phase of proposed algorithm applies genetic algorithm that uses the output of first

phase as initial population and aims to optimize two objectives i.e. to minimize completion cost

and the overall execution time. The algorithm fetches the information about type, price and other

physical configuration of various types of virtual machines available with all Cloud providers.

This information helps the meta-broker to optimize the cost of execution. The meta-broker is also

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3107 http://jier.org

capable of periodically collecting and monitoring the status of the bandwidth and latency of the

channel between itself and cloud providers. The size of the population depends on the number of

existing resources (both physical and virtual), virtual machine types per provider and number of

input tasks. The algorithm forms a new population using crowding mechanism (to ensure

diversity) from the initial population by selecting fittest chromosomes (those who dominate

according to objective functions 1 and 2 as described below) using a Roulette method.

The fitness of an individual (chromosome) is determined as:

Fitness (x) = w1 ⋅ 1/C total + w2 ⋅ 1/T total

Where w1 and w2 are weights assigned to cost and runtime, respectively, based on their

importance. With the aim to explore more possible hosts with better fitness, this new population

is recombined using a uniform crossover. This operation requires at least two input tasks to be

scheduled. This operation randomly selects two cutting points in population and all of the input

tasks are swapped between these cutting points. It then performs mutation (if n>=3) that randomly

selects two tasks from the population and swaps them in order to improve the fitness of individuals.

After that, the algorithm iterates until paretoSet (solutions) do not improve between iteration steps.

At each iteration, an attempt is made to improve the fitness of the individuals in the population. It

is obvious that the quality of the algorithm’s interim results cannot decrease while iterating

because the worst results are removed at each step. If the pareto set does not change in a number

of subsequent iterations, the algorithm terminates. Furthermore, to provide an upper bound for the

scheduler’s runtime, there is a limit of iterations, which depends on the population size. Fitness

means the quality of mapping with respect to cost and runtime. Thereby, both runtime and cost

are aggregated over all iterations. The cost and runtime of each step in turn depends on the

underlying resource (since VMs prices vary between different providers) and the geographical

location of the provider.

Algorithm (Phase II)

Input:

• Output of Phase 1: Initial resource-task mapping.

• T = {t1, t2, ..., tn}: Set of tasks T.

• R = {r1, r2, ..., rm}: Set of available resources R.

• VM configurations, pricing, bandwidth, and latency details.

Output:

• Optimized resource-task mapping minimizing cost and execution time.

Steps:

1. Initialization:

o Generate the initial population using heuristic initialization (Phase 1).

o Compute objective functions and fitness for each individual.

2. Main Loop:

Repeat until the pareto set does not improve or the iteration limit is reached:

o Selection: Apply Roulette Wheel Selection to choose the fittest chromosomes.

o Crossover: Perform uniform crossover to generate new individuals.

o Mutation: If N≥3, mutate a subset of the population to ensure diversity.

o Fitness Evaluation: Re-compute fitness for the new population.

o Update Pareto Set: Add non-dominated solutions to the pareto set and remove

dominated solutions.

3. Termination:

o Stop the algorithm if no improvement is observed in the pareto set for k

consecutive iterations or the iteration limit is reached.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3108 http://jier.org

5 Experimental Evaluations

In this section, the details of metrics that are used for gauging the efficiency of proposed algorithm

and detailed experiment setup is presented:

5.1 Performance metric

As a measure of performance, total cost and total time for complete execution of tasks under

varying workload conditions have been used as metrics for analysis in controlled simulation

environment. We computed the total time and total cost of execution of a workflow using proposed

Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource Selection (BRS)

algorithm that is based on minimum completion time by selecting a resource with maximum cost.

5.2 Data and Implementation

To simulate proposed Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource

Selection (BRS) algorithm, SmartFed simulator was used. A federation has been simulated with

three geographically separated Cloud Providers. The cost of using their datacentres varies from

provider to provider and is taken akin real life examples such as Amazon, Rackspace and Google.

Table 1 depicts the details of cost assumed for each datacentre in terms of US dollar ($).

Table 1: Cost for usage of resources for each Datacentre

 First Data Center

(cost in $)

Second Data Center

(cost in $)

Third Data Center

(cost in $)

Bandwidth ~64Mbps ~48Mbps ~56Mbps

Small VM (per Hour) 1.70 1.67 1.8

Large VM (per

Hour)

3.14 3.84 3.16

Memory cost(per GB

per hour)

0.05 0.05 0.05

Host machines of these providers are connected to each other and meta-broker via high-speed

links having a bandwidth of 64 Mbps. Storage capacity of each host is 10 TB and RAM is 8 GB

and each host is equipped with 8 PEs. The processing capability of resources was confined to be

same for evaluating both algorithms. Other underlying assumptions in these experiments are that

in each of the datacentre, number of hosts, number of PEs and provisioning policies for VM, RAM

and bandwidth are kept uniform. After input tasks are submitted, the meta-broker returns a

mapping solution allocating each task to a particular provider. In this paper, allocation schemes

have been implemented using SmartFed federation simulator.

6. Results and Discussion

Table 2 depicts the details of output achieved from the simulation for Latency-Aware Resource

Selection (LA-RS) algorithm and Best Resource Selection algorithms. The table lists the cost time

and total cost of execution of tasks on the federation of clouds.

Table 2: Total Cost and Total Time of executing input tasks in a federation of three Cloud

Providers in three different workload scenarios

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3109 http://jier.org

Total Cost Total Time Total Cost Total Time Total Cost Total Time

LA-RS ALGO 1.59678 30.6 39690 765885 756250 15388225

BRS ALGO 1.93543 31.3 48385.75 783300 967500 15671329

% Change 21.2083067 2.2875817 21.9091711 2.27384007 27.9338843 1.83974435

Scaling the Input Tasks from 10 to 500000

10 Input Tasks to

Federation

25000 Input Tasks to

Federation

500000 Input Tasks to

Federation

Above figures depict graphically the results obtained experimentally and shows the comparison

of Latency-Aware Resource Selection (LA-RS) algorithm outperforms Best Resource Selection

algorithm distinctively. Figure 1, Fig. 3 and Fig. 5 display the comparison of cost efficiency of

proposed LA-RS algorithm and BRS algorithm for 10, 25,000, and 500,000 tasks, showing that

LA-RS algorithm consistently incurs a lower total cost, with the cost gap widening as volume of

tasks increases. For 10 tasks, LA-RS algorithm's cost is about $1.75, while BRS algorithm is $2.0,

making LA-RS algorithm 12.5% more cost-efficient. At 25,000 tasks, LA-RS algorithm costs

40,000, whereas BRS algorithm reaches 50,000, offering a 20% cost reduction. This trend

amplifies for 500,000 tasks, where LA-RS algorithm incurs 750,000, while BRS algorithm nears

1,000,000, meaning LA-RS algorithm is 25% cheaper. The increasing cost difference suggests

that BRS algorithm scales less efficiently, likely due to additional overhead or inefficiencies at

higher workloads. The trade-off is that while both algorithms may perform similarly for small

workloads, LA-RS algorithm becomes significantly more cost-effective as task volume increases,

making it the preferred choice for large-scale scheduling in cloud computing or distributed

systems.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3110 http://jier.org

Fig. 2, Fig. 4 and Fig. 6 depict the makespan for both resource allocation algorithms in all three

workload scenarios. An insight into these figures show that out-performance of proposed Latency-

Aware Resource Selection (LA-RS) algorithm over Best Resource Selection algorithm is evident

on makespan metric also. But the improvement is not by huge margin. As the makespan in first

workload scenario (10 tasks) is upgraded by as low as close to 2%. Moreover, as the numbers of

input tasks are increased in second and third workload scenarios, the makespan of proposed LA-

RS algorithm is again improved marginally only i.e. to the tune of 2%. It clearly indicates that as

the workload is scaled up, the proposed algorithm sustains its trend of superseding nature of lower

makespan than BRS algorithm.

Figure 7 illustrates the trend in total cost and makespan for both algorithms under analysis, clearly

highlighting the advantages of the proposed algorithm. This benefit is particularly evident due to

its enhanced consideration of bandwidth availability when selecting resources in the initial stage

of the algorithm.

7. Conclusion

The proposed Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource Selection

(BRS) algorithm evaluated experimentally in this paper have shown that proposed Latency-Aware

Resource Scheduling (LA-RS) algorithm gives the lower cost for execution of tasks since this

algorithm not only exploits the cheaper datacentre but also tries to optimize the makespan

simultaneously. As optimal (low cost and least time) provider’s datacentre runs out of resources,

algorithm selects the next cheaper provider’s datacentre to execute remaining tasks. As the

resources are scaled up in the cheapest datacentre, the total cost of execution of tasks decreases

more steeply as compared to Best Resource Selection algorithm. Amongst the three workload

situations, it has been observed that proposed algorithm utilized resources in a more effective

manner as compared to BRS algorithm in all workload scenarios. Rather its performance is

accelerated as the input tasks are scaled up. Conclusively, adopting LA-RS algorithm for high-

volume tasks could lead to substantial cost savings (20-25%) and a marginal demotion in

makespan too, reinforcing its suitability for large-scale operational deployments.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3111 http://jier.org

References:

• Abdulhamid, Shafi’i Muhammad, Muhammad Shafie Abd Latiff, Syed Hamid Hussain

Madni, and Mohammed Abdullahi. 2018. “Fault Tolerance Aware Scheduling Technique

for Cloud Computing Environment Using Dynamic Clustering Algorithm.” Neural

Computing and Applications 29(1):279–93. doi: 10.1007/s00521-016-2448-8.

• Abualigah, Laith, and Muhammad Alkhrabsheh. 2022. “Amended Hybrid Multi-Verse

Optimizer with Genetic Algorithm for Solving Task Scheduling Problem in Cloud

Computing.” The Journal of Supercomputing 78(1):740–65. doi: 10.1007/s11227-021-

03915-0.

• Agostinho, Lucio, Guilherme Feliciano, Leonardo Olivi, Eleri Cardozo, and Eliane

Guimaraes. 2011. “A Bio-Inspired Approach to Provisioning of Virtual Resources in

Federated Clouds.” Pp. 598–604 in 2011 IEEE Ninth International Conference on

Dependable, Autonomic and Secure Computing. Sydney, Australia: IEEE.

• Arabnejad, Hamid, and Jorge G. Barbosa. 2014. “A Budget Constrained Scheduling

Algorithm for Workflow Applications.” Journal of Grid Computing 12(4):665–79. doi:

10.1007/s10723-014-9294-7.

• Bacanin, Nebojsa, Timea Bezdan, Eva Tuba, Ivana Strumberger, and Milan Tuba. 2020.

“Monarch Butterfly Optimization Based Convolutional Neural Network Design.”

Mathematics 8(6):936. doi: 10.3390/math8060936.

• Behzad, Shahram, Reza Fotohi, and Mehdi Effatparvar. 2013. “Queue Based Job

Scheduling Algorithm for Cloud Computing.” 7.

• Bezdan, Timea, Miodrag Zivkovic, Nebojsa Bacanin, Ivana Strumberger, Eva Tuba, and

Milan Tuba. 2021. “Multi-Objective Task Scheduling in Cloud Computing Environment

by Hybridized Bat Algorithm.” Journal of Intelligent & Fuzzy Systems 42(1):411–23. doi:

10.3233/JIFS-219200.

• Calheiros, Rodrigo N., and Rajiv Ranjan. 2009. “CloudSim: A Novel Framework for

Modeling and Simulation of Cloud Computing Infrastructures and Services.” Grid

Computing and Distributed Systems Laboratory (1):10. doi:

doi.org/10.48550/arXiv.0903.2525.

• Chaudhary, Divya, and Bijendra Kumar. 2018. “Cloudy GSA for Load Scheduling in

Cloud Computing.” Applied Soft Computing 71:861–71. doi: 10.1016/j.asoc.2018.07.046.

• Chaudhary, Divya, and Bijendra Kumar. 2019. “Cost Optimized Hybrid Genetic-

Gravitational Search Algorithm for Load Scheduling in Cloud Computing.” Applied Soft

Computing 83:105627. doi: 10.1016/j.asoc.2019.105627.

• Cheng, Mingxi, Ji Li, and Shahin Nazarian. 2018. “DRL-Cloud: Deep Reinforcement

Learning-Based Resource Provisioning and Task Scheduling for Cloud Service

Providers.” Pp. 129–34 in 2018 23rd Asia and South Pacific Design Automation

Conference (ASP-DAC). Jeju: IEEE.

• Chhabra, Bharat, and Shilpa Gupta. 2024. “A Critical Assessment of Task Scheduling

Algorithms in Cloud Computing: A Comparative Approach.” Pp. 125–35 in Proceedings

of Fifth Doctoral Symposium on Computational Intelligence. Vol. 1086, Lecture Notes in

Networks and Systems, edited by A. Swaroop, V. Kansal, G. Fortino, and A. E. Hassanien.

Singapore: Springer Nature Singapore.

• Ding, Ding, Xiaocong Fan, Yihuan Zhao, Kaixuan Kang, Qian Yin, and Jing Zeng. 2020.

“Q-Learning Based Dynamic Task Scheduling for Energy-Efficient Cloud Computing.”

Future Generation Computer Systems 108:361–71. doi: 10.1016/j.future.2020.02.018.

• Dorronsoro, Bernabé, Sergio Nesmachnow, Javid Taheri, Albert Y. Zomaya, El-Ghazali

Talbi, and Pascal Bouvry. 2014. “A Hierarchical Approach for Energy-Efficient

Scheduling of Large Workloads in Multicore Distributed Systems.” Sustainable

Computing: Informatics and Systems 4(4):252–61. doi: 10.1016/j.suscom.2014.08.003.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3112 http://jier.org

• Dubey, Kalka, Mohit Kumar, and S. C. Sharma. 2018. “Modified HEFT Algorithm for

Task Scheduling in Cloud Environment.” Procedia Computer Science 125:725–32. doi:

10.1016/j.procs.2017.12.093.

• Dubey, Kalka, and S. C. Sharma. 2021. “A Novel Multi-Objective CR-PSO Task

Scheduling Algorithm with Deadline Constraint in Cloud Computing.” Sustainable

Computing: Informatics and Systems 32:100605. doi: 10.1016/j.suscom.2021.100605.

• Ebadifard, Fatemeh, and Seyed Morteza Babamir. 2018. “A PSO-Based Task Scheduling

Algorithm Improved Using a Load-Balancing Technique for the Cloud Computing

Environment.” Concurrency and Computation: Practice and Experience 30(12):e4368.

doi: 10.1002/cpe.4368.

• Heba, Heba. 2024. “Optimizing Task Scheduling and Resource Allocation in Computing

Environments Using Metaheuristic Methods.” Fusion: Practice and Applications

15(1):157–79. doi: 10.54216/FPA.150113.

• Houssein, Essam H., Ahmed G. Gad, Yaser M. Wazery, and Ponnuthurai Nagaratnam

Suganthan. 2021. “Task Scheduling in Cloud Computing Based on Meta-Heuristics:

Review, Taxonomy, Open Challenges, and Future Trends.” Swarm and Evolutionary

Computation 62:100841. doi: 10.1016/j.swevo.2021.100841.

• Huankai Chen, Frank Wang, Na Helian, and Gbola Akanmu. 2013. “User-Priority Guided

Min-Min Scheduling Algorithm for Load Balancing in Cloud Computing.” Pp. 1–8 in 2013

National Conference on Parallel Computing Technologies (PARCOMPTECH).

Bangalore, India: IEEE.

• Hussain, Mehboob, Lian-Fu Wei, Abdullah Lakhan, Samad Wali, Soragga Ali, and Abid

Hussain. 2021. “Energy and Performance-Efficient Task Scheduling in Heterogeneous

Virtualized Cloud Computing.” Sustainable Computing: Informatics and Systems

30:100517. doi: 10.1016/j.suscom.2021.100517.

• Iturriaga, Santiago, Sergio Nesmachnow, Andrei Tchernykh, and Bernabe Dorronsoro.

2016. “Multiobjective Workflow Scheduling in a Federation of Heterogeneous Green-

Powered Data Centers.” Pp. 596–99 in 2016 16th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid). Cartagena, Colombia: IEEE.

• Khan, S. U., and I. Ahmad. 2009. “A Cooperative Game Theoretical Technique for Joint

Optimization of Energy Consumption and Response Time in Computational Grids.” IEEE

Transactions on Parallel and Distributed Systems 20(3):346–60. doi:

10.1109/TPDS.2008.83.

• Kofahi, Najib A., Tariq Alsmadi, Malek Barhoush, and Moy’awiah A. Al-Shannaq. 2019.

“Priority-Based and Optimized Data Center Selection in Cloud Computing.” Arabian

Journal for Science and Engineering 44(11):9275–90. doi: 10.1007/s13369-019-03845-3.

• Lindberg, Peder, James Leingang, Daniel Lysaker, Samee Ullah Khan, and Juan Li. 2012.

“Comparison and Analysis of Eight Scheduling Heuristics for the Optimization of Energy

Consumption and Makespan in Large-Scale Distributed Systems.” The Journal of

Supercomputing 59(1):323–60. doi: 10.1007/s11227-010-0439-6.

• Lu, Yong, and Na Sun. 2019. “An Effective Task Scheduling Algorithm Based on

Dynamic Energy Management and Efficient Resource Utilization in Green Cloud

Computing Environment.” Cluster Computing 22(S1):513–20. doi: 10.1007/s10586-017-

1272-y.

• Malawski, Maciej, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. 2012. “Cost- and

Deadline-Constrained Provisioning for Scientific Workflow Ensembles in IaaS Clouds.”

Pp. 1–11 in 2012 International Conference for High Performance Computing, Networking,

Storage and Analysis. Salt Lake City, UT: IEEE.

• Mezmaz, M., N. Melab, Y. Kessaci, Y. C. Lee, E. G. Talbi, A. Y. Zomaya, and D. Tuyttens.

2011. “A Parallel Bi-Objective Hybrid Metaheuristic for Energy-Aware Scheduling for

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3113 http://jier.org

Cloud Computing Systems.” Journal of Parallel and Distributed Computing 71(11):1497–

1508. doi: 10.1016/j.jpdc.2011.04.007.

• Mishra, Sambit Kumar, Deepak Puthal, Bibhudatta Sahoo, Prem Prakash Jayaraman, Song

Jun, Albert Y. Zomaya, and Rajiv Ranjan. 2018. “Energy-Efficient VM-Placement in

Cloud Data Center.” Sustainable Computing: Informatics and Systems 20:48–55. doi:

10.1016/j.suscom.2018.01.002.

• Moschakis, Ioannis A., and Helen D. Karatza. 2012. “Evaluation of Gang Scheduling

Performance and Cost in a Cloud Computing System.” The Journal of Supercomputing

59(2):975–92. doi: 10.1007/s11227-010-0481-4.

• Nabi, Said, Masroor Ahmad, Muhammad Ibrahim, and Habib Hamam. 2022. “AdPSO:

Adaptive PSO-Based Task Scheduling Approach for Cloud Computing.” Sensors

22(3):920. doi: 10.3390/s22030920.

• Nabi, Said, Muhammad Ibrahim, and Jose M. Jimenez. 2021. “DRALBA: Dynamic and

Resource Aware Load Balanced Scheduling Approach for Cloud Computing.” IEEE

Access 9:61283–97. doi: 10.1109/ACCESS.2021.3074145.

• Natesan, Gobalakrishnan, and Arun Chokkalingam. 2020. “An Improved Grey Wolf

Optimization Algorithm Based Task Scheduling in Cloud Computing Environment.” The

International Arab Journal of Information Technology 73–81. doi: 10.34028/iajit/17/1/9.

• Nayak, Suvendu Chandan, and Chitaranjan Tripathy. 2018. “Deadline Sensitive Lease

Scheduling in Cloud Computing Environment Using AHP.” Journal of King Saud

University - Computer and Information Sciences 30(2):152–63. doi:

10.1016/j.jksuci.2016.05.003.

• Peng, Zhiping, Jianpeng Lin, Delong Cui, Qirui Li, and Jieguang He. 2020. “A Multi-

Objective Trade-off Framework for Cloud Resource Scheduling Based on the Deep Q-

Network Algorithm.” Cluster Computing 23(4):2753–67. doi: 10.1007/s10586-019-

03042-9.

• Pradeep, K., and T. Prem Jacob. 2018. “CGSA Scheduler: A Multi-Objective-Based

Hybrid Approach for Task Scheduling in Cloud Environment.” Information Security

Journal: A Global Perspective 27(2):77–91. doi: 10.1080/19393555.2017.1407848.

• Praveen, S. Phani, K. Thirupathi Rao, and B. Janakiramaiah. 2018. “Effective Allocation

of Resources and Task Scheduling in Cloud Environment Using Social Group

Optimization.” Arabian Journal for Science and Engineering 43(8):4265–72. doi:

10.1007/s13369-017-2926-z.

• Ramamoorthy, S., G. Ravikumar, B. Saravana Balaji, S. Balakrishnan, and K.

Venkatachalam. 2021. “RETRACTED ARTICLE: MCAMO: Multi Constraint Aware

Multi-Objective Resource Scheduling Optimization Technique for Cloud Infrastructure

Services.” Journal of Ambient Intelligence and Humanized Computing 12(6):5909–16.

doi: 10.1007/s12652-020-02138-0.

• Singh, Harvinder, Sanjay Tyagi, Pardeep Kumar, Sukhpal Singh Gill, and Rajkumar

Buyya. 2021. “Metaheuristics for Scheduling of Heterogeneous Tasks in Cloud Computing

Environments: Analysis, Performance Evaluation, and Future Directions.” Simulation

Modelling Practice and Theory 111:102353. doi: 10.1016/j.simpat.2021.102353.

• Wei, Jing, and Xin-fa Zeng. 2019. “Optimal Computing Resource Allocation Algorithm

in Cloud Computing Based on Hybrid Differential Parallel Scheduling.” Cluster

Computing 22(S3):7577–83. doi: 10.1007/s10586-018-2138-7.

• Wu, Chu-ge, and Ling Wang. 2018. “A Multi-Model Estimation of Distribution Algorithm

for Energy Efficient Scheduling under Cloud Computing System.” Journal of Parallel and

Distributed Computing 117:63–72. doi: 10.1016/j.jpdc.2018.02.009.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

3114 http://jier.org

• Zhu, Qing-Hua, Huan Tang, Jia-Jie Huang, and Yan Hou. 2021. “Task Scheduling for

Multi-Cloud Computing Subject to Security and Reliability Constraints.” IEEE/CAA

Journal of Automatica Sinica 8(4):848–65. doi: 10.1109/JAS.2021.1003934.

• Zivkovic, Miodrag, Nebojsa Bacanin, Eva Tuba, Ivana Strumberger, Timea Bezdan, and

Milan Tuba. 2020. “Wireless Sensor Networks Life Time Optimization Based on the

Improved Firefly Algorithm.” Pp. 1176–81 in 2020 International Wireless

Communications and Mobile Computing (IWCMC). Limassol, Cyprus: IEEE.

