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ABSTRACT 

Federation of cloud is a collaborative model in which multiple cloud providers participate by 

sharing resource, services and data across their platform. This collaboration is aimed to create a 

unified system where user can benefit from multiple cloud providers while maintain the 

independence of each participating cloud. One of the key component for sustainability and 

successful operation of a federation of clouds is its efficient resource selection model. Resource 

selection has always been a challenge in cloud computing and is even more challenging in a 

Federation or multi-cloud setup. Researchers have dealt with this problem in various ways. Most 

of these existing algorithms in consider processor and memory needs without considering the 

bandwidth requirements of an application.  In this paper, two-stage Latency-Aware Resource 

Selection (LA-RS) algorithm has been proposed to obtain a balance between various confronting 

objectives including Quality of Service (QoS), cost and completion time of applications. The first 

phase of the proposed algorithm figures out the top corresponding computing resources for the 

input tasks that satisfy their QoS requirements including cost and also considers network-latency 

in a federation or multi-cloud environment; the subsequent phase applies genetic algorithm that 

iteratively re-allocates the input tasks to optimize tasks execution time and cost. The comparison 

of proposed algorithm with existing algorithm clearly exhibits that along with considering the 

bandwidth of the underlying network, proposed algorithm achieves the objectives of optimal 

minimum execution time as well as optimal minimum cost.  

 

1. Introduction 

Federation of clouds presents an environment to consumers in which multiple cloud providers 

participate in order to offer services to its users (Agostinho et al. 2011). It generally involves a 

huge amount of data transmission. As federation of clouds presents a promise of offering a set of 

huge infrastructure services, platform services and application based services as on-demand 

service over Internet, its success largely depends on the quality of underneath network. The need 

of numerous data exchanges among physical or virtual resources in data-intensive scientific 

workflow applications also necessitates an efficient task-scheduling and resource selection scheme 

that carefully optimizes various objectives of scheduling and meets deadline constraints 
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(Malawski et al. 2012; Nayak and Tripathy 2018), optimizes cost (Moschakis and Karatza 2012) 

and conserves energy etc. Since, applications scheduled without considering the available 

bandwidth may impede performance execution, resulting in wastage of resources. Also a 

scheduling algorithm that does not consider bandwidth as a parameter may schedule an application 

to a cloud provider through a channel having low availability of bandwidth while another channel 

with better bandwidth may remain unused.  

 

Many Researchers have investigated the problem of scheduling the tasks and resource allocation 

in clouds and federation of clouds from various perspectives such as execution cost, makespan, 

energy, reliability and fault tolerance etc. Few researchers have developed the algorithms with 

only one objective in focus whereas a bunch of them have considered bi-objective algorithms 

based on meta-heuristic approaches (Heba 2024; Mezmaz et al. 2011). 

 

In the recent past, many strategies and algorithms have been proposed by researchers (Heba 2024; 

Khan and Ahmad 2009; Kofahi et al. 2019) to optimize the task scheduling and resource selection 

in a federation of clouds. But unfortunately, most of these algorithms are centred on allocation of 

processor and memory to various applications and ignore the important factor of bandwidth 

requirements. The contribution of this paper is a multi-objective resource selection algorithm that 

takes into account the bandwidth of the links connecting different providers’ domains in order to 

avoid quality of service degradation. The rest of the paper is organized as follows. Section 2 

represents the related work in this domain. Section 3 involves formulation of problem and section 

4 proposes the latency-aware resource selection algorithm. Section 5 and 6 experimentally 

evaluate the proposed algorithm, results received and discussion based upon it. Section 7 presents 

a conclusion.   

 

2. Related Work 

A heuristic based critical greedy algorithm was proposed for IaaS clouds to achieve minimum end 

to end delay besides keeping the cost under user specified constraint in paper (Malawski et al. 

2012). 

 

A novel Min-Min algorithm is proposed (Huankai Chen et al. 2013) to schedule such applications 

on clouds that involve considerable network communication. The proposed algorithm is capable 

of adapting to the change of network transmission speed autonomously. Authors (Mezmaz et al. 

2011) developed bi-objective dynamic level scheduling algorithm and bi-objective genetic 

algorithm for a federation of clouds. Both of these algorithms can trade off execution time against 

the reliability of the application. 

 

Moreover, a cooperative game theory based solution has been proposed (Khan and Ahmad 2009) 

for task scheduling in computational grids. Their algorithm minimizes the energy consumption 

and makespan while meeting the deadline constraints. (Mezmaz et al. 2011) proposed a parallel 

bi-objective genetic algorithm for cloud computing system that focused on minimizing the energy 

consumption and makespan. The algorithm was based on cooperative island farmer-worker model 

and reported a non-dominated Pareto set of scheduling solutions. 

 

Additionally a variety of eight heuristics for energy consumption aware task scheduling in large-

scale distributed systems  (Lindberg et al. 2012) has been presented. Six of these heuristics were 

greedy heuristics and two heuristics were based on genetic algorithm. All of these strategies tried 

to achieve an optimal solution under deadline and memory restrictions. Another task scheduling 

model for cloud computing based on multi-objective genetic algorithms has been proposed 

in(Behzad, Fotohi, and Effatparvar 2013). The proposed task scheduling method attempts to 
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minimize the energy consumption, maximizes the profits while meeting the deadline constraints 

of the application. 

 

A heterogeneous Budget constrained scheduling algorithm has been proposed in (Arabnejad and 

Barbosa 2014) for service-oriented computing that maintains the execution cost under pre 

specified budget and also minimizes the execution time of the application to maintain the lower 

makespan. 

 

Researchers in (Dorronsoro et al. 2014) presented a two level strategy focused on multi-objective 

problem of scheduling large workloads of parallel applications in multi-core distributed systems. 

Their objectives were to optimize the makespan and energy consumption. Authors also evaluated 

few QoS metrics that helped them to optimize their objective functions besides maximizing the 

Quality of Service. 

 

Authors (Ebadifard and Babamir 2018) presented Round-Robin (RR) and Particle Swarm 

Optimization (PSO) hybrid algorithm focused on minimizing the execution cost but skipping the 

cost and other QoS parameters altogether. The study in (Abdulhamid et al. 2018) attempted to 

achieve two optimization objectives of minimum execution cost and minimum execution time in 

cloud computing environment. The major characteristic of the presented algorithm is that it also 

considers the fault and recovery time in case of failure. The paper (Iturriaga et al. 2016) undertakes 

the scheduling in a federation of distributed data centres as a multi constrained and bi-objective 

problem and intends to optimize cost and energy. The work is oriented to find Pareto optimal 

schedules i.e. where none of the scheduling order can substantially dominate the other schedules 

with lower cost and good bandwidth. However, their algorithm did not attend the bandwidth 

requirements of tasks.  

 

Research work proposed in (Ebadifard and Babamir 2018) and (Lu and Sun, 2019) focused on 

balancing the load distribution of incoming tasks to attain higher average resource utilization ratio 

but their algorithms suffered from lower QoS, High Cost and low fault tolerance. Research study 

in (Praveen, Rao, and Janakiramaiah 2018) proposed unique meta-heuristic solutions for task 

scheduling using social group optimization and SJF algorithm but also concluded that not a single 

proposed technique is suitable to all variations of workload. Research work in (Dubey, Kumar, 

and Sharma 2018) modified the well-established conventional task scheduling algorithm namely 

Modified Heterogeneous Earliest Finish Time (Modified HEFT) that was able to handle only static 

workload. 

 

Various researchers have tried to solve the problem of resource selection and developed algorithms 

in cloud computing environment. Their studies have categorized various proposed resource 

selection algorithms in many different classes such as static algorithms (dealing with 

predetermined requests of resources) /dynamic algorithms (Ding et al. 2020; Nabi, Ibrahim, and 

Jimenez 2021), (Chhabra and Gupta 2024) (dealing with request for varying quantity of resources), 

batch-mode (dealing with a bunch of tasks together) /online algorithms (dealing with interactive 

task requests), pre-emptive or non-pre-emptive algorithms and centralized or distributed 

algorithms etc. one more categorization is based on the characteristics of the incoming tasks or on 

the characteristics of the data-centre of provider (Cheng, Li, and Nazarian 2018; Mishra et al. 

2018; Wu and Wang 2018). Here data-centre characteristics represents infrastructure attributes of 

the provider viz. computational capabilities of virtual machines, size of primary memory, available 

bandwidth etc. The cloudlets/tasks characteristics includes the resource requirements of the 

tasks/cloudlets viz. memory requirements, QoS required, bandwidth required amongst others. 

In research work (Pradeep and Jacob 2018), researchers proposed a task scheduling algorithm that 

combined the merits of cuckoo search and gravitational search algorithms and overcome their 
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shortcomings. The proposed solution was compared with GSA, GA and PSO algorithms. The 

results proved that the proposed hybrid algorithm performed better on various metrics. The study 

evaluated the proposed algorithm on cost/profit and energy metrics whereas few important aspects 

of bandwidth/network latency and makespan have not been attended. One more cloudy-

gravitational search algorithm (CGSA) for scheduling the tasks was proposed in (Chaudhary and 

Kumar 2018) with an objective to achieve lower makespan but it also incurred high cost and low 

QoS to do so. Whereas a study in(Wei and Zeng 2019) proposed a novel idea of hybrid differential 

parallel computing to process the dynamic incoming tasks on available resources to maintain low 

energy consumption but with a trade-off of high overhead and low Average Resource Utilization 

(ARU). 

 

Research work in (Dubey and Sharma 2021) proposed a novel PSO based algorithm that has the 

dual properties of chemical reaction and particle swarming optimization both. The algorithm 

produces the set of optimal sequence depending upon the deadline and it proved to enhance the 

cost, makespan and energy-efficiency. The results were compared with existing peer category 

algorithms using CloudSim toolkit and an average improvement of 1 to 6 percent in makespan and 

1 to 9 percent in energy-efficiency was claimed. The authors did not attend to the bandwidth, load 

balancing, and lowering the task rejection ratio. 

 

Strategies of Linear Descending and Adaptive Inertia Weight that is based on providing an 

appropriate inertia weight was introduced in (Nabi et al. 2022) that adds feature of adaptability to 

their PSO algorithm. Due to this, the algorithm behaves optimally and attains the improvement of 

12% to 60 % in makespan and average resource utilization. The algorithm fails to respond to 

delay-sensitive tasks and also did not attend to the requirements of bandwidth. 

 

Authors in (Singh et al. 2021) have presented an insight on six major meta-heuristic algorithms 

that are nature-inspired. They also presented the comparison of these algorithms based on few 

metrics such as makespan, average resource utilization. The algorithms were ACO, PSO, GA, 

ABC, C(crow)SA, P(penguin)SO algorithm. The experimental comparisons of these algorithms 

proved that Crow Search algorithm produces the most optimal schedule to attain best makespan 

and average resource utilization and this algorithm is closely followed by Penguin Search 

algorithm. 

 

(Houssein et al. 2021) presented the review of task scheduling algorithms that are based on all 

major meta-heuristics scheduling techniques viz. Evolutionary algorithms, swarm based 

scheduling algorithms, emerging scheduling algorithms and hybrid meta-heuristic algorithms. 

Authors also categorized the various task scheduling problems according to single-

objective/multi-objective problems and restrictions such as deadline etc. The study revealed 

various challenges associated with all categories of algorithms and their tentative solutions also. 

The review presented in this paper suggest that majority of the work has been carried out 

considering single objective (such as scalability, throughput, reliability etc.) as a metric for 

resource selection whereas multi-objective algorithms are much less in number hence can be 

addressed in future work.  

 

Furthermore, a two-stage task scheduling algorithm (EPETS- Energy and Performance Efficient 

Task Scheduling Algorithm) has been mentioned in (Hussain et al. 2021) that deals with lowering 

the execution time while meeting the deadlines in the first stage and to do the resource-task 

mapping while meeting the objective of lower energy-consumption in the second stage. Their 

research suggested to use energy-efficient task priority system for scheduling the tasks to achieve 

true balance between energy-consumption and efficient task scheduling. Their suggestion also 
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proved to attain the stated objectives when compared with existing energy-efficient algorithms 

using simulation. 

 

(Abualigah and Alkhrabsheh 2022) proposed a novel hybrid task scheduling algorithm that 

combines the features of multi-verse optimizer and Genetic algorithm. The proposed algorithm is 

focused to improve the rate of transfer of tasks on the cloud network and thus improving the 

performance in the initial phase. The proposed algorithm undertook the decision of task-transfer 

depending on various task-specific parameters such as size of task, number of tasks, number of 

VMs, capacity etc. The proposed solution was simulated using MATLAB tool and proved to 

optimize the performance even with large task sizes hence scalable. The proposed solution did not 

attend the various constraints such as meeting deadlines or bandwidth. 

 

A separate literature discussed in (Zhu et al. 2021), a two phase task scheduling algorithm has 

been presented that did the task-resource mapping in first phase (in lines with the requirements of 

security and reliability) and optimization in the second phase of the algorithm to optimize the 

makespan and cost. The first phase did the task-resource mapping based on QoS and trust 

requirements of the tasks hence took care of security and reliability constraints. The second phase 

undertook the multiple rounds of resource allocation to find the most optimal schedule in multi-

cloud infrastructure. The proposed algorithm was simulated to compare with modified ABC 

algorithm, modified cuckoo search algorithm, max-min algorithm and min-min task scheduling 

algorithm. The results proved to be in favour of the proposed algorithm in terms of makespan, 

average resource utilization and cost. The proposed work did not consider deadline constraints of 

the task, data-transfer requirements of the task and bandwidth/network-delay of the cloud 

infrastructure. 

 

Authors proposed a novel adaptive task scheduling algorithm based on Deep Q-network technique 

in (Peng et al. 2020). The proposed online resource scheduling environment handled the trade-off 

between minimum energy cost and optimal makespan. The simulation results exhibited the 

optimization effects as per the favoured objective. The presented algorithm yet suffered from the 

problem of scalability and did not give any weightage to underlying network bandwidth capacity. 

 

Researchers in (Natesan and Chokkalingam 2020) proposed a task scheduling algorithm based on 

Grey Wolf optimization methodology that was focused on performance (in terms of makespan) 

and cost of the incoming tasks.  The proposed algorithm was simulated using Cloudsim toolkit 

and achieved better results in terms of lower task completion time and optimal cost. Besides 

meeting the objectives, the algorithm also respected the deadlines of the tasks as compared to peer 

algorithms but did not consider other constraints such as bandwidth of the channel, energy 

consumption etc. 

 

In (Zivkovic et al. 2020) proposed an improved firefly algorithm to optimally balance the 

workload among available and required nodes so as to minimize the energy consumption. The 

proposed algorithm was compared with LEACH algorithm, firefly algorithm and PSO approaches 

using the same network infrastructure. The main focus of the algorithm was towards the direction 

of solving clustering problem and skipped few important metrics viz. makespan and cost. A 

comprehensive hybrid approach in (Bacanin et al. 2020) proposed a monarch butterfly 

optimization algorithm in conjunction with two swarm-intelligence algorithms. The results of 

simulation proved that proposed solution is more accurate than other approaches. 

 

Authors in (Ramamoorthy et al. 2021) proposed a novel multi-objective task scheduling algorithm 

that adheres to multiple restrictions while meeting the overall objectives of quickest service at 

minimal cost. The proposed algorithm was simulated using Cloudsim toolkit (Calheiros and 
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Ranjan 2009) and results were compared with existing multi-objective task scheduling algorithms 

which turned to be in favour of the proposed solution. 

 

Additionally, a hybrid Bat (swarm-intelligence) algorithm has been used in (Bezdan et al. 2021) 

to achieve multiple objectives of minimal makespan and minimal cost. The proposed BAAEQRL 

algorithm’s simulated results were compared with peer meta-heuristic algorithms using same 

scenarios of synthetic and parallel workload. While the proposed algorithm has totally omitted 

bandwidth availability and energy consumption metrics, it managed to surpass other compared 

algorithms on makespan and cost metrics.  

 

The research work carried out in this context by various researchers may be outlined as below: 

 

Reference 

 

No. 

Year 
Algorithm/Technique 

used 

Merits of the 

Algorithm -

(Parameters 

optimized) 

Limitations Tool used 
M

a
k

e
sp
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n
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e
a
d

li
n

e
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o
st

 

E
n

e
r
g
y

 

B
a
n

d
w

id
th

 

O
th

e
r
s 

(Ebadifard 

and Babamir 

2018) 

2017 
PSO using Load 

Balancing Technique 
Y - - - - Y 

 QoS, High Cost and low 

fault tolerance 
CloudSim 

(Lu and Sun, 

2019) 
2017 

Energy efficient 

Resource-Aware Load-

Balancing Clonal 

Selection Algorithm 

- - - Y - - Not scalable CloudSim 

(Praveen et al. 

2018) 
2017 

Social Group 

Optimization and SJF 
Y - - - - Y 

Not a single proposed 

technique is suitable to all 

variations of workload 

CloudSim 

(Dubey et al. 

2018) 
2017 

Modified Heterogeneous 

Earliest Finish Time 

(Modifies HEFT) 

Y - - - - - Static workload CloudSim 

(Wu and 

Wang 2018) 
2018 

multi-model estimation of 

distributed algorithm 
Y - - Y - - 

Makespan and energy 

consumption is 

compromised 

C on Linux 

(Cheng et al. 

2018) 
2018 

Deep Reinforcement 

Learning-Based Resource 

Provisioning and Task 

Scheduling 

- - - Y - - 
High overhead and 

priorities are ignored. 
- 

(Mishra et al. 

2018) 
2018 

Energy-Efficient VM-

Placement  
- - - Y - Y 

Cost, QoS parameters are 

ignored. 
Cloudsim 

(Pradeep and 

Jacob 2018) 
2018 CGSA scheduler Y  Y    

Did not consider the 

trade-off costs. 
 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 5 Issue 1 (2025) 
 

3103 http://jier.org 

(Chaudhary 

and Kumar 

2018) 

2018 
Cloudy-Gravitational 
Search Algorithm 

Y - - - - -  High cost and low QoS CloudSim 

(Wei and 

Zeng 2019) 
2019 

Hybrid differential 

parallel computing  
Y - - - - Y 

High overhead and low 

ARU 

C++ and 

MATLAB 7 

(Dubey and 

Sharma 2021) 
2021 

PSO based Task 

Scheduling 
Y - Y Y - - 

No consideration to 

bandwidth, load 

balancing and task 

rejection 

CloudSim 

(Nabi et al. 

2022) 
2022 

Adaptive PSO based Task 

Scheduling 
Y - - - - Y 

Not considered delay-

sensitive tasks and 

bandwidth needs 

Eclipse and 

CloudSim 

(Hussain et al. 

2021) 
2021 

Two stage  EPETS- 

Energy and Performance 

Efficient Task Scheduling 

Algorithm 

Y Y - Y - - 

High cost and no 

consideration of 

bandwidth requirements 

of tasks 

- 

(Abualigah 

and 

Alkhrabsheh 

2022) 

2022 

Hybrid Multi-verse 

Genetic Task Scheduling 

algorithm 

Y - - - Y Y 

Meeting deadlines not 

given weightage and 

other QoS miss. 

MATLAB 

(Zhu et al. 

2021) 
2021 

Two Phase Task 

Scheduling algorithm with 

security and reliability 

Y - Y - - Y 

High overhead leads to 

deadlines miss and 

bandwidth needs. 

- 

(Peng et al. 

2020) 
2020 

Deep Q-Network 

scheduler 
Y   Y   

Not scalable and 

Bandwidth needs were 

ignored 

 

(Natesan and 

Chokkalinga

m 2020) 

2020 Grey-Wolf optimization Y Y     

Resource utilization is 

lower and Deadlines were 

ignored 

 

(Zivkovic et 

al. 2020) 
2020 

Modified Firefly 

optimization 
   Y  Y 

Did not focus on 

makepan/cost 
IntelliJ IDE  

(Bacanin et al. 

2020) 
2020 

Hybrid Monarch Butterfly 

optimization 
Y Y     

Skipped to attend 

constraints or faults. 
IntelliJ IDE  

(Ramamoorth

y et al. 2021) 
2021 

MCAMO: multi 

constraint aware multi-

objective resource 

scheduling optimization 

Y  Y    

Not all mentioned 

constraints were adhered 

to while optimization of 

simultaneous objectives. 

CloudSim 

(Bezdan et al. 

2021) 
2022 Hybrid Bat algorithm Y  Y    

Low ARUs and no 

specific constraints were 

adhered to. 

CloudSim 

(Chaudhary 

and Kumar 

2019) 

2018 
Genetic Gravitational 

Search Algo (GSA) 
Y - Y - - - 

Fixed Bandwidth 

Assumption, Single 

Workflow assumption 

C++ Coding 

on Linux 

3. Problem Formulation 

In the work done by few authors (Lu and Sun, 2019;Pradeep and Jacob, 2018) have focused on 

energy-efficient scheduling. They have also been able to achieve their goals and proved the 

efficiency of the algorithms by doing comparison with peer algorithms. But an intense literature 
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review clearly indicates that each algorithm has its own set of limitations, which is also evident 

from the table constructed above. Some of the proposed algorithms and methods have not 

considered the deadlines of the tasks while some others have not considered the reliability factor. 

Some of the available studies could not pay due heed to the data transfer cost (Dubey and Sharma 

2021; Hussain et al. 2021; Nabi et al. 2022; Peng et al. 2020). 

 

Similarly, most of papers have focused their research work on makespan only (Chaudhary and 

Kumar 2018; Dubey et al. 2018). Whereas other metrics viz. average resource utilization, energy 

efficiency and cost of execution, deadlines, bandwidth have not been given due consideration. 

 

It is concerning that while existing research on multi-objective task scheduling has aimed to 

achieve specific optimization goals, it has often failed to meet other critical quality parameters. 

Most of the work done so far has focused on optimizing processor availability and memory 

resources, ensuring efficient execution within these constraints. However, very few of these 

approaches have taken network latency into account when scheduling tasks. Neglecting this factor 

can lead to inefficient job execution, increased delays, and suboptimal performance in distributed 

cloud environments. Addressing network latency alongside traditional resource considerations is 

crucial for achieving truly efficient and reliable task scheduling. 

 

This paper presents a novel two-stage algorithm for job scheduling in a cloud federation. In the 

first stage, the algorithm performs network-latency-aware job allocation, ensuring that jobs are 

assigned to appropriate cloud resources based on network conditions. The output of this stage 

serves as input for the second stage, which employs a Genetic Algorithm (GA) for optimal 

resource allocation. This second stage focuses on minimizing job completion time while 

simultaneously optimizing execution costs. By integrating network-awareness in the initial stage 

and leveraging GA for cost-effective resource distribution, the proposed approach enhances 

scheduling efficiency in multi-cloud environments. 

 

4. Proposed Scheduling Algorithm 

A task scheduling and resource selection problem is comprised of mapping ‘n’ applications on 

federation of clouds having ‘k’ cloud providers, connected to a meta-broker as shown in Figure 1. 

Each provider has ‘r’ types of computational resources along with computational cost of each 

resource. The aim of the proposed scheme is to find a schedule that maps each application on 

appropriate cloud with optimal cost and execution time considering bandwidth as an important 

parameter. Another distinctive feature of the proposed algorithm is it being a two stage algorithm 

where output of the first stage acts as an input mechanism for the second stage algorithm. 

 
 

Figure 1 Federation of Clouds 

Notation: 

Let ‘CP’ is a set of m cloud providers, CP= {CP1, CP2,…..,CPm | m>=2} and Pij is a matrix that 

indicates the price per unit of time for using the resource where i represents the cloud provider 

(1<= i <= m) and j represents resource (1 <= j <= r). 
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Let Network_Latency (t, r) represent the network latency for task ‘t’ on resource ‘r’ i.e. between 

the meta-broker and cloud provider. Network latency depends upon the distance and bandwidth 

of the channel from the broker to the cloud provider. 

 

Let T is a set of tasks, T=  { T1,T2,.... Tn } that are submitted by various users for execution to the 

federation and let Cijk indicates the computational cost of executing ith task on jth resource type of 

the kth cloud provider. It is defined as: 

Cijk = Dijk x Pjk 

 

Where Dijk is the time duration for which ith task has used the jth resource type of kth cloud provider 

and Pjk represents the price of using jth computational resource of kth cloud provider. 

 

The proposed Latency-Aware Resource Selection (LA-RS) algorithm intends to optimise the 

scheduling of input tasks over a multi-cloud set-up or federation of clouds. Besides being network-

latency aware, it takes into account user’s requirements against multiple criteria - cost and 

completion time. Overall, the algorithm consists of three broad steps: 1) collecting the 

configurations of data centres and prices of virtual machines offered by participating cloud 

providers, 2) use the latency-aware greedy approach to prepare task-datacentre mapping that forms 

the initial population for next phase 3) search an optimal schedule that meets minimal cost and 

time constraints using genetic algorithm. 

 

The proposed algorithm finds a mapping-vector x for scheduling ‘n’ tasks over the federation with 

‘m’ participating clouds having ‘r’ resource types. Mathematically x = (x1, x2, ……., xn ) is derived 

with the following objectives: 

 

 min ( ∑ ∑𝑟
𝑗=1 ∑ 𝐶𝑚

𝑘=1
𝑛
𝑖=1 ijk ) .……………………[1]  

 

where Cijk is the computational cost of executing ith application on jth resource type of the kth cloud 

provider.    

And 

ETtotal = max r∈R (∑ t∈T(r) Execution_Time(t, r) + Network_Latency(t, r)) 

.……………………[2] 

 

Where ET indicates the minimum overall execution time for T tasks on R resources. 

The proposed algorithm performs federated resource allocation subject to network restrictions and 

mainly works in two phases, where its first phase selects a task from meta-tasks with maximum 

Expected Execution Time [EET] to allocate it a computing resource with Minimum Completion 

Time [MCT].  For each task ‘t’ from set of tasks T and resource ‘r’ from the set of resources R: 

EET (T) = max t ∈ T (Estimated Execution Time of Task t) 

ECT (t, r) = Execution Time of t on r + Network Latency (t, r) 

Makespan = max r ∈ R (∑t ∈ T(r) ECT (t, r)) 

 

The algorithm determines Estimated Completion Time [ECT] for each task i.e. estimated time that 

might be taken by submitted tasks to complete on different available resources. The resource with 

the shortest total completion time (including network latency) is then given the task with the 

overall maximum estimated execution time. Ultimately, after updating all recent changes in 

timings of tasks and resources, the process is repeated until all submitted tasks are completed. The 

goal of first phase of algorithm is to reduce the entire makespan, or total time after including 
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network-latency. Choosing the resource that takes the least amount of time to complete the largest 

task entails picking the fastest resource among those that are accessible. 

 

Algorithm (Phase I) 

Input: 

• T = {t1, t2, ..., tn}: Set of tasks T. 

• R = {r1, r2, ..., rm}: Set of available resources R. 

• Network_Latency(t, r): Network latency for task ‘t’ on resource ‘r’. 

• Exec_Time(t, r): Execution time of task ‘t’ on resource ‘r’. 

 

Output: 

• Resource allocation for tasks T and the makespan. 

 

Steps: 

1. Initialize: 

o Create an empty task-to-resource mapping table. 

o Initialize the total completion time of all resources to 0. 

2. Phase 1 - Task and Resource Selection: 

Repeat until all tasks in T are allocated: 

o Compute EET (T): Identify the task ‘t*’ with the maximum expected execution 

time. 

o Compute ECT (t∗, r) for all resources ‘r’. 

o Identify resource r* with the minimum ECT (t*, r) (i.e., MCT(t*)). 

o Assign t* to r*. 

o Update the total completion time of r* and the remaining tasks in T. 

3. Update Timings: 

o After each assignment, update the task timings and resource completion times 

based on the latest allocations. 

4. Repeat: 

o Repeat the above steps until all tasks are assigned to resources. 

 

The mapping thus produced after completion of first phase serves as initial population to the 

subsequent phase of the proposed algorithm. The initial population in a genetic algorithm (GA) 

plays a crucial role in the algorithm's performance and the efficiency with which it explores the 

solution space. The initial population impacts the genetic algorithm since a diverse initial 

population allows the algorithm to explore a wider range of potential solutions early on. This helps 

in avoiding premature convergence to suboptimal solutions and encourages the discovery of better 

solutions over time. A well-chosen initial population can help the genetic algorithm converge 

faster by providing a solid starting point. If the population already contains individuals that are 

relatively close to optimal solutions, the search can progress quickly. So, in this paper, heuristic 

Initialization strategy is being followed since using domain-specific knowledge to initialize the 

population with individuals that are likely to be closer to the optimal solution can significantly 

improve performance. The novel feature of the algorithm is that it considers not only the execution 

time while allocating the task to various providers but also the network latency of the underlying 

channel.  

 

The second phase of proposed algorithm applies genetic algorithm that uses the output of first 

phase as initial population and aims to optimize two objectives i.e. to minimize completion cost 

and the overall execution time. The algorithm fetches the information about type, price and other 

physical configuration of various types of virtual machines available with all Cloud providers. 

This information helps the meta-broker to optimize the cost of execution. The meta-broker is also 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 5 Issue 1 (2025) 
 

3107 http://jier.org 

capable of periodically collecting and monitoring the status of the bandwidth and latency of the 

channel between itself and cloud providers. The size of the population depends on the number of 

existing resources (both physical and virtual), virtual machine types per provider and number of 

input tasks. The algorithm forms a new population using crowding mechanism (to ensure 

diversity) from the initial population by selecting fittest chromosomes (those who dominate 

according to objective functions 1 and 2 as described below) using a Roulette method.  

 

The fitness of an individual (chromosome) is determined as: 

Fitness (x) = w1 ⋅ 1/C total + w2 ⋅ 1/T total 

 

Where w1 and w2 are weights assigned to cost and runtime, respectively, based on their 

importance. With the aim to explore more possible hosts with better fitness, this new population 

is recombined using a uniform crossover. This operation requires at least two input tasks to be 

scheduled. This operation randomly selects two cutting points in population and all of the input 

tasks are swapped between these cutting points. It then performs mutation (if n>=3) that randomly 

selects two tasks from the population and swaps them in order to improve the fitness of individuals. 

 

After that, the algorithm iterates until paretoSet (solutions) do not improve between iteration steps. 

At each iteration, an attempt is made to improve the fitness of the individuals in the population.  It 

is obvious that the quality of the algorithm’s interim results cannot decrease while iterating 

because the worst results are removed at each step. If the pareto set does not change in a number 

of subsequent iterations, the algorithm terminates. Furthermore, to provide an upper bound for the 

scheduler’s runtime, there is a limit of iterations, which depends on the population size. Fitness 

means the quality of mapping with respect to cost and runtime. Thereby, both runtime and cost 

are aggregated over all iterations. The cost and runtime of each step in turn depends on the 

underlying resource (since VMs prices vary between different providers) and the geographical 

location of the provider. 

 

Algorithm (Phase II) 

Input: 

• Output of Phase 1: Initial resource-task mapping. 

• T = {t1, t2, ..., tn}: Set of tasks T. 

• R = {r1, r2, ..., rm}: Set of available resources R. 

• VM configurations, pricing, bandwidth, and latency details. 

Output: 

• Optimized resource-task mapping minimizing cost and execution time. 

Steps: 

1. Initialization: 

o Generate the initial population using heuristic initialization (Phase 1). 

o Compute objective functions and fitness for each individual. 

2. Main Loop: 

Repeat until the pareto set does not improve or the iteration limit is reached: 

o Selection: Apply Roulette Wheel Selection to choose the fittest chromosomes. 

o Crossover: Perform uniform crossover to generate new individuals. 

o Mutation: If N≥3, mutate a subset of the population to ensure diversity. 

o Fitness Evaluation: Re-compute fitness for the new population. 

o Update Pareto Set: Add non-dominated solutions to the pareto set and remove 

dominated solutions. 

3. Termination: 

o Stop the algorithm if no improvement is observed in the pareto set for k 

consecutive iterations or the iteration limit is reached. 
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5 Experimental Evaluations 

In this section, the details of metrics that are used for gauging the efficiency of proposed algorithm 

and detailed experiment setup is presented: 

 

5.1 Performance metric 

As a measure of performance, total cost and total time for complete execution of tasks under 

varying workload conditions have been used as metrics for analysis in controlled simulation 

environment. We computed the total time and total cost of execution of a workflow using proposed 

Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource Selection (BRS) 

algorithm that is based on minimum completion time by selecting a resource with maximum cost. 

 

5.2 Data and Implementation 

To simulate proposed Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource 

Selection (BRS) algorithm, SmartFed simulator was used. A federation has been simulated with 

three geographically separated Cloud Providers.  The cost of using their datacentres varies from 

provider to provider and is taken akin real life examples such as Amazon, Rackspace and Google. 

Table 1 depicts the details of cost assumed for each datacentre in terms of US dollar ($). 

 

Table 1: Cost for usage of resources for each Datacentre 

 First Data Center 

(cost in $) 

Second Data Center 

(cost in $) 

Third Data Center 

(cost in $) 

Bandwidth  ~64Mbps ~48Mbps ~56Mbps 

Small VM (per Hour) 1.70 1.67 1.8 

Large VM (per  

Hour) 

3.14 3.84 3.16 

Memory cost(per GB 

per hour) 

0.05 0.05 0.05 

 

Host machines of these providers are connected to each other and meta-broker via high-speed 

links having a bandwidth of 64 Mbps. Storage capacity of each host is 10 TB and RAM is 8 GB 

and each host is equipped with 8 PEs. The processing capability of resources was confined to be 

same for evaluating both algorithms. Other underlying assumptions in these experiments are that 

in each of the datacentre, number of hosts, number of PEs and provisioning policies for VM, RAM 

and bandwidth are kept uniform.  After input tasks are submitted, the meta-broker returns a 

mapping solution allocating each task to a particular provider. In this paper, allocation schemes 

have been implemented using SmartFed federation simulator. 

 

6. Results and Discussion 

Table 2 depicts the details of output achieved from the simulation for Latency-Aware Resource 

Selection (LA-RS) algorithm and Best Resource Selection algorithms. The table lists the cost time 

and total cost of execution of tasks on the federation of clouds. 

 

Table 2: Total Cost and Total Time of executing input tasks in a federation of three Cloud 

Providers in three different workload scenarios 
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Total Cost Total Time Total Cost Total Time Total Cost Total Time

LA-RS ALGO 1.59678 30.6 39690 765885 756250 15388225

BRS ALGO 1.93543 31.3 48385.75 783300 967500 15671329

% Change 21.2083067 2.2875817 21.9091711 2.27384007 27.9338843 1.83974435

Scaling the Input Tasks from 10 to 500000

10 Input Tasks to 

Federation

25000 Input Tasks to 

Federation

500000 Input Tasks to 

Federation

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above figures depict graphically the results obtained experimentally and shows the comparison 

of Latency-Aware Resource Selection (LA-RS) algorithm outperforms Best Resource Selection 

algorithm distinctively. Figure 1, Fig. 3 and Fig. 5 display the comparison of cost efficiency of 

proposed LA-RS algorithm and BRS algorithm for 10, 25,000, and 500,000 tasks, showing that 

LA-RS algorithm consistently incurs a lower total cost, with the cost gap widening as volume of 

tasks increases. For 10 tasks, LA-RS algorithm's cost is about $1.75, while BRS algorithm is $2.0, 

making LA-RS algorithm 12.5% more cost-efficient. At 25,000 tasks, LA-RS algorithm costs 

40,000, whereas BRS algorithm reaches 50,000, offering a 20% cost reduction. This trend 

amplifies for 500,000 tasks, where LA-RS algorithm incurs 750,000, while BRS algorithm nears 

1,000,000, meaning LA-RS algorithm is 25% cheaper. The increasing cost difference suggests 

that BRS algorithm scales less efficiently, likely due to additional overhead or inefficiencies at 

higher workloads. The trade-off is that while both algorithms may perform similarly for small 

workloads, LA-RS algorithm becomes significantly more cost-effective as task volume increases, 

making it the preferred choice for large-scale scheduling in cloud computing or distributed 

systems.  
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Fig. 2, Fig. 4 and Fig. 6 depict the makespan for both resource allocation algorithms in all three 

workload scenarios. An insight into these figures show that out-performance of proposed Latency-

Aware Resource Selection (LA-RS) algorithm over Best Resource Selection algorithm is evident 

on makespan metric also. But the improvement is not by huge margin. As the makespan in first 

workload scenario (10 tasks) is upgraded by as low as close to 2%. Moreover, as the numbers of 

input tasks are increased in second and third workload scenarios, the makespan of proposed LA-

RS algorithm is again improved marginally only i.e. to the tune of 2%. It clearly indicates that as 

the workload is scaled up, the proposed algorithm sustains its trend of superseding nature of lower 

makespan than BRS algorithm. 

 

 
 

Figure 7 illustrates the trend in total cost and makespan for both algorithms under analysis, clearly 

highlighting the advantages of the proposed algorithm. This benefit is particularly evident due to 

its enhanced consideration of bandwidth availability when selecting resources in the initial stage 

of the algorithm. 

 

7. Conclusion 

The proposed Latency-Aware Resource Selection (LA-RS) algorithm and Best Resource Selection 

(BRS) algorithm evaluated experimentally in this paper have shown that proposed Latency-Aware 

Resource Scheduling (LA-RS) algorithm gives the lower cost for execution of tasks since this 

algorithm not only exploits the cheaper datacentre but also tries to optimize the makespan 

simultaneously. As optimal (low cost and least time) provider’s datacentre runs out of resources, 

algorithm selects the next cheaper provider’s datacentre to execute remaining tasks. As the 

resources are scaled up in the cheapest datacentre, the total cost of execution of tasks decreases 

more steeply as compared to Best Resource Selection algorithm. Amongst the three workload 

situations, it has been observed that proposed algorithm utilized resources in a more effective 

manner as compared to BRS algorithm in all workload scenarios. Rather its performance is 

accelerated as the input tasks are scaled up. Conclusively, adopting LA-RS algorithm for high-

volume tasks could lead to substantial cost savings (20-25%) and a marginal demotion in 

makespan too, reinforcing its suitability for large-scale operational deployments. 
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