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ABSTRACT 

The ability to forecast electricity generation is crucial for effective energy management and policy 

planning. This study investigates the use of historical electricity generation data as a predictor for future 

generation trends using an autoregressive integrated moving average (ARIMA)-based regression model. 

Focusing on lagged values of electricity generation, we assess the predictive accuracy and statistical 

significance of the lagged variable (LAG1) for forecasting. The results indicate a strong positive 

relationship between past and future electricity generation, with the LAG1 coefficient being statistically 

significant at the 1% level. The regression model explains 97% of the variation in electricity generation, 

demonstrating its high utility for future forecasting. This analysis provides valuable insights for energy 

policymakers and stakeholders in preparing for future electricity demand. 

 

Keywords: Electricity consumption, ARIMA, regression analysis, forecasting, lagged values, energy 
policy, predictive modeling. 

 

Introduction 

Accurate forecasting of electricity generation is essential for policymakers, utilities, and energy planners. 

The demand for electricity is constantly evolving due to factors like population growth, industrial 

development, and technological advances. In this context, historical data becomes a powerful tool for 

predicting future trends. One of the most effective forecasting techniques is based on time series models, 

particularly those using autoregressive integrated moving average (ARIMA) methodologies. By 

analyzing lagged values of electricity generation, ARIMA models can offer valuable insights into future 

generation requirements. This paper explores the application of ARIMA-based regression analysis using 

lagged electricity generation values (LAG1) to forecast future electricity generation in India, providing 

a statistical framework for decision-making in energy production and policy. 

 

Methodology 

This study utilizes a regression-based approach with the inclusion of lagged values (LAG1) to forecast 

electricity generation trends. Data from 2009-10 to 2023-24 are analyzed, and the regression model is 

built to examine the relationship between current electricity generation and the previous year’s 

generation (LAG1). The model incorporates the following time series formula 

Electricity Consumption Forecast t =  α + β1 LAG t-1  + β2  LAG t-2  +  β3 LAG t-3 +  ε 

 

Where ,  

LAG t-1   - Electricity Consuption for one prior period  

LAG t-2   -  Electricity Consuption for two  prior period  

LAG t-3 – Electricity Consuption for  three Prior Period  

α  - Intrepect Constant  
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 β1, β2 and  β3 are the coefficients for LAG1, LAG2, and LAG3, respectively, 

 ϵ  is the error term (residual). 

 

Literature Review 

The forecasting of electricity generation has been a critical area of research due to the need for accurate 

planning to avoid power shortages and optimize energy supply. Several studies have examined time 

series forecasting models, including ARIMA, which is particularly effective in capturing patterns in 

historical data. 

 

S.L. Ho a, M. Xie (1988), ARIMA  time series technique makes very few assumptions and is very 

flexible. It is theoretically and statistically sound in its foundation and no a priori postulation of models 

is required when analysing failure data. An illustrative example on a mechanical system failures is 

presented. Comparison is also made with the traditional Duane model. It is concluded that ARIMA 

model is a viable alternative that gives satisfactory results in terms of its predictive performance. 

 

Adebiyi A. Ariyo; Adewumi (2015),the autoregressive integrated moving average (ARIMA) models 

have been explored in literature for time series prediction. This paper presents extensive process of 

building stock price predictive model using the ARIMA model. Published stock data obtained from New 

York Stock Exchange (NYSE) and Nigeria Stock Exchange (NSE) are used with stock price predictive 

model developed. Results obtained revealed that the ARIMA model has a strong potential for short-term 

prediction and can compete favourably with existing techniques for stock price prediction 

 
J. Contreras; R. Espinola (2003),price forecasting is becoming increasingly relevant to producers and 

consumers in the new competitive electric power markets. Both for spot markets and long-term contracts, 

price forecasts are necessary to develop bidding strategies or negotiation skills in order to maximize 

benefit. This paper provides a method to predict next-day electricity prices based on the ARIMA 

methodology. ARIMA techniques are used to analyze time series and, in the past, have been mainly used 

for load forecasting, due to their accuracy and mathematical soundness. A detailed explanation of the 

aforementioned ARIMA models and results from mainland Spain and Californian markets are presented. 

  

Peter C. Reiss, Matthew W. White (2005),recent efforts to restructure electricity markets have renewed 

interest in assessing how consumers respond to price changes. This paper develops a model for 

evaluating the effects of alternative tariff designs on electricity use. The model concurrently addresses 

several interrelated difficulties posed by nonlinear pricing, heterogeneity in consumer price sensitivity, 

and consumption aggregation over appliances and time. We estimate the model using extensive data for 

a representative sample of 1300 California households. The results imply a strikingly skewed distribution 

of household electricity price elasticities in the population, with a small fraction of households 

accounting for most aggregate demand response. We then estimate the aggregate and distributional 

consequences of recent tariff structure changes in California, the consumption effects of which have 

been the subject of considerable debate 

 

Arunesh Kumar Singh*, Ibraheem(2013),load forecasts are extremely important for energy suppliers 

and other participants in electric energy generation, transmission, distribution and markets. Accurate 

models for electric power load forecasting are essential to the operation and planning of a utility 

company. Load forecasts are extremely important for energy suppliers and other participants in electric 

energy generation, transmission, distribution and markets. This paper presents a review of electricity 

demand forecasting techniques. The various types of methodologies and models are included in the 

literature. Load forecasting can be broadly divided into three categories: short-term forecasts which are 

https://www.sciencedirect.com/author/9634359100/min-xie
https://ieeexplore.ieee.org/author/37087758757
https://ieeexplore.ieee.org/author/37265600000
https://ieeexplore.ieee.org/author/37325299900
https://ieeexplore.ieee.org/author/37330122900
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usually from one hour to one week, medium forecasts which are usually from a week to a year, and long-

term forecasts which are longer than a year. Based on the various types of studies presented in these 

papers, the load forecasting techniques may be presented in three major groups: Traditional Forecasting 

technique, Modified Traditional Technique and Soft Computing Technique. 

 

Jatin Bedi, Durga Toshniwal (2009),research has focused on consumer segmentation and demand pattern 

analysis using smart metering data, with an emphasis on long-term electricity consumption prediction at 

the utility (UT) level. Simulation tools for energy use prediction are typically classified into engineering, 

AI, and hybrid methods. While engineering methods are clear, they are computationally intensive and 

less generalizable. Statistical machine learning techniques, such as linear regression, have been applied 

but often struggle with non-linearity in the data. Multi-Layer Perceptron (MLP) models have 

demonstrated better accuracy compared to linear regression and ARIMA, Support Vector Machines 

(SVM). Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) approaches have 

been developed for energy demand estimation across various sectors. Hybrid frameworks, which 

combine different models, have been proposed for short-term electricity demand forecasting, with 

machine learning techniques like SVM, ANN, and random forest showing effectiveness in these tasks. 

Recent studies suggest that Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models 

outperform other neural network architectures in price prediction. Additionally, ensemble strategies have 

been introduced to improve the generalization capabilities of deep learning models, further enhancing 

their predictive accuracy 

 

Zauresh Atakhanova_, Peter Howie (2007),between 1990 and 2003, Kazakhstan's GDP structure 
underwent significant changes, with the service sector's share rising from 32% to 52%, while the 

agricultural sector's share fell from 35% to 8%. Total electricity consumption in the country decreased 

by 40% between 1990 and 1999 but began to rise again in 2000, reaching 62,000 GWh by 2003. The 

industrial sector accounted for 57% of total electricity consumption, while the service and residential 

sectors consumed 8.5% and 10%, respectively. Large industrial consumers and regional electricity 

companies (RECs) purchase electricity directly from generators in an unregulated wholesale market, 

while other consumers buy electricity from regulated RECs and pay additional distribution system access 

fees, alongside generation and transmission tariffs. The introduction of competition between large 

generating companies and the provision of open access to transmission facilities led to an 80% drop in 

wholesale prices from 1997 to 2002, with prices in 2004 ranging from 0.5 to 1 US cent per kWh. In 

2000, residential electricity prices in Kazakhstan were about 30% of the long-run marginal cost, and 

although non-payment was a significant issue, collection levels improved after 1997, reaching an 

estimated 85% of billings in 2004. 

 

Catia Cialani, Reza Mortazavi (2018) electricity consumption often employs a partial adjustment model, 

which assumes that the desired level of consumption is influenced by factors such as price, GDP, and 

other economic variables. A dynamic panel data approach is frequently used to analyze electricity 

consumption at both the aggregate household and industry levels, with particular attention given to the 

residential and industrial sectors. These models highlight the importance of past consumption in shaping 

current electricity usage, suggesting a habitual component in consumer behavior. Logarithmic regressors 

are commonly used in these models, as they allow for direct interpretation of the coefficients as demand 

elasticities. Studies examine both short- and long-run price elasticities to better understand how 

electricity demand responds to price changes over different time horizons. Additionally, the endogeneity 

problem posed by the inclusion of lagged consumption variables is a recognized challenge, with 

instrumental variable estimators often employed in the literature to address this issue and obtain unbiased 

estimates of the relationship between electricity consumption and its determinants. 
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 Gareth Powells,Harriet Bulkeley (2014) ,on time-of-use (TOU) pricing explores its impact on the timing 

and rhythms of electricity consumption, with a particular focus on consumer behavior during peak and 

off-peak hours. A notable example of such research is the Customer Led Network Revolution (CLNR) 

project, a large interdisciplinary study that produces multiple types of data, including power system 

monitoring, electricity consumption data from smart meters, surveys on socio-technical context and 

attitudes, and qualitative research visits to investigate current and emerging practices related to energy 

use. This project is situated within the context of the UK's Low Carbon Network Fund (LCNF), which 

aims to explore demand shifting or 'flexibility' in energy consumption. The LCNF seeks to replicate 

incentives for innovation typically found in unregulated companies, fostering new approaches to 

managing electricity demand. The research investigates how TOU tariffs, which offer financial 

incentives to minimize electricity use during peak hours, influence consumer behavior, with detailed rate 

structures often provided for specific trials. The CLNR project, in particular, aims to advance the concept 

of 'flexibility' in energy users and systems, challenging the traditional view of electricity load as a purely 

physical property of networks and emphasizing the dynamic, adaptable nature of modern energy 

consumption patterns. 

 

Himanshu A. Amarawickrama (2006), a  comprehensive time-series analysis of electricity demand in 

Sri Lanka explored the application of six econometric methods—Static and Dynamic Engle-Granger, 

Fully Modified OLS (FMOLS), Johansen, Pesaran-Shin-Smith (PSS), and Structural Time Series 

Modeling (STSM)—to estimate and forecast demand up to 2025. The study revealed significant 

variability in elasticity estimates, with long-run income elasticity ranging from 1.0 to 2.0 and price 
elasticity remaining low, between 0 and -0.06. Despite methodological differences, forecasts among 

models showed reasonable consistency, with a maximum divergence of 452 MW in peak demand by 

2025. Scenario analysis highlighted sensitivity to GDP growth rates, illustrating how high and low GDP 

assumptions could significantly impact demand projections. The findings underscore the importance of 

using multiple forecasting models to inform energy planning in Sri Lanka’s capital-constrained 

electricity sector. Notably, the low price elasticity suggests that pricing reforms alone may have a limited 

effect on moderating demand. The study also emphasizes the challenges posed by Sri Lanka’s restricted 

ability to import or export electricity, coupled with economic growth fluctuations, which amplify 

planning risks for the energy sector. 

 

Source : Source:  

https://powermin.gov.in/en/content/power-sector-glance-all-india 
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ACTUAL LAG1 LAG2 LAG3  

969.506 928.113 850.387 808.498 

1,020.20 969.506 928.113 850.387 

1,110.39 1,020.20 969.506 928.113 

1,173.60 1,110.39 1,020.20 969.506 

1,241.69 1,173.60 1,110.39 1,020.20 

1,308.15 1,241.69 1,173.60 1,110.39 

1,376.10 1,308.15 1,241.69 1,173.60 

1,389.10 1,376.10 1,308.15 1,241.69 

1,381.86 1,389.10 1,376.10 1,308.15 

1,491.86 1,381.86 1,389.10 1,376.10 

1,624.16 1,491.86 1,381.86 1,389.10 

1739.09 1,624.16 1,491.86 1,381.86 

 

SUMMARY OUTPUT 

  

Regression Statistics 

Multiple R 0.99 

Year 

Total Generation 

Electricity    

(Including Renewable 

Sources) (Billion Units) 
LAG1 LAG2 LAG3 

2009-10 808.498       

2010-11 850.387 808.498     

2011-12 928.113 850.387 808.498   

2012-13 969.506 928.113 850.387 808.498 

2013-14 1,020.20 969.506 928.113 850.387 

2014-15 1,110.39 1,020.20 969.506 928.113 

2015-16 1,173.60 1,110.39 1,020.20 969.506 

2016-17 1,241.69 1,173.60 1,110.39 1,020.20 

2017-18 1,308.15 1,241.69 1,173.60 1,110.39 

2018-19 1,376.10 1,308.15 1,241.69 1,173.60 

2019-20 1,389.10 1,376.10 1,308.15 1,241.69 

2020-21 1,381.86 1,389.10 1,376.10 1,308.15 

2021-22  1,491.86 1,381.86 1,389.10 1,376.10 

2022-23 1,624.16 1,491.86 1,381.86 1,389.10 

2023-24  1739.09 1,624.16 1,491.86 1,381.86 

2024-25       ? 1739.09 1,624.16 1,491.86 

      1739.09 1,624.16 

        1739.09 
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R Square 0.98 

Adjusted R Square 0.97 

Standard Error 37.65 

Observations 12.00 

 

ANOVA      

  df SS MS F 
Significance 

F 

Regression 3.00 582438.87 194146.30 136.93 0.00 

Residual 8.00 11342.69 1417.84   

Total 11.00 593781.57       

 

  
Coefficient

s 

Standar

d Error 
t Stat 

P-

value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 17.93 68.89 0.26 0.80 -140.92 176.78 -140.92 176.78 

LAG1 1.48 0.30 4.86 0.00 0.77 2.18 0.77 2.18 

LAG2 -1.00 0.52 -1.91 0.09 -2.20 0.21 -2.20 0.21 

LAG3  0.57 0.36 1.57 0.16 -0.27 1.40 -0.27 1.40 

 

Interpretation of Regression Results  Using   Lag1, Lag2 and  Lag3   Variables     

The regression analysis conducted in this study aims to model the electricity generation in India, utilizing 

lag variables (LAG1, LAG2, and LAG3) as predictors. Below is the detailed interpretation of the results, 

which can be used for a journal article: 

 

1. Regression Statistics Overview 

• Multiple R: 0.99 — This indicates a very strong linear relationship between the actual and 

predicted values of electricity generation. A value close to 1 suggests that the model explains 

nearly all the variance in the data. 

• R-squared: 0.98 — The model explains 98% of the variance in electricity generation. This is an 

excellent fit, showing that the lagged variables are highly predictive of future generation levels. 

• Adjusted R-squared: 0.97 — After accounting for the number of predictors, the adjusted R-

squared confirms that the model is robust and does not overfit the data. It supports the reliability 

of the findings. 

• Standard Error: 37.65 — This is the standard deviation of the residuals (the difference between 
the actual and predicted values). A lower standard error indicates that the predictions are 

relatively close to the actual values. 

 

2. ANOVA (Analysis of Variance) 

• F-statistic: 136.93 — This statistic indicates that the overall regression model is highly 

significant. A high F-statistic, combined with a very low Significance F value (0.00), shows that 

at least one of the predictors (LAG1, LAG2, or LAG3) has a meaningful relationship with 

electricity generation. 

• Significance F: 0.00 — This extremely low value suggests that the probability of obtaining this 

F-statistic by random chance is negligible. Therefore, the model as a whole is statistically 

significant. 
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3. Coefficients and Interpretation 

• Intercept (17.93): The intercept represents the baseline value of electricity generation when all 

lagged variables are zero. This value is not statistically significant (p-value = 0.80), indicating 

that it is not meaningful for predicting future values of generation by itself. 

• LAG1 (1.48): This is the coefficient for the lag of one year. The positive coefficient means that 

a 1-unit increase in the previous year's generation is associated with an increase of 1.48 units in 

the current year's generation. The p-value (0.00) is highly significant, suggesting a strong and 

statistically reliable relationship. LAG1 is the most important predictor of future electricity 

generation, and its influence is clear. 

• LAG2 (-1.00): The negative coefficient for LAG2 indicates that a 1-unit increase in generation 

from two years ago is associated with a decrease of 1.00 unit in the current year's generation. 

However, this relationship is only marginally statistically significant with a p-value of 0.09. This 

suggests that LAG2 may not be as reliable as LAG1 for predicting future values, but it could still 

have a slight influence on generation trends. 

• LAG3 (0.57): The coefficient for LAG3 is positive, suggesting that an increase in electricity 

generation from three years ago is associated with a modest increase in the current year's 

generation. However, this result is not statistically significant (p-value = 0.16), indicating that 

the impact of LAG3 is weaker and may be more incidental than predictive. 

 

4. Statistical Significance and Practical Implications 

• Significant Variables: LAG1 is highly statistically significant, with a p-value of 0.00, indicating 
that the previous year's generation has the most considerable predictive power for current 

generation. In contrast, LAG2 and LAG3 have relatively weaker or insignificant effects on future 

generation, as evidenced by their higher p-values (0.09 and 0.16, respectively). 

• Practical Implication: Given that LAG1 is the most significant predictor, policymakers and 

energy planners can focus on recent trends in electricity generation to forecast future needs. The 

inclusion of lagged variables, especially LAG1, allows for more informed decision-making 

regarding infrastructure planning, energy policy, and resource allocation. 

         

Calculating ARIMA using Only LAG1  

 

 ACTUAL LAG1 

969.506 928.113 

1,020.20 969.506 

1,110.39 1,020.20 

1,173.60 1,110.39 

1,241.69 1,173.60 

1,308.15 1,241.69 

1,376.10 1,308.15 

1,389.10 1,376.10 

1,381.86 1,389.10 

1,491.86 1,381.86 

1,624.16 1,491.86 

1739.09 1,624.16 
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SUMMARY OUTPUT        

         

Regression Statistics        

Multiple R 0.99        

R Square 0.97        

Adjusted R 

Square 
0.97 

       

Standard Error 40.66        

Observations 12.00        

         

ANOVA         

  df SS MS F 
Significance 

F    

Regression 1.00 577247.10 577247.10 349.12 0.00    

Residual 10.00 16534.45 1653.45      

Total 11.00 593781.60          

 

  Coefficients 
Standard 

Error 
t Stat 

P-

value 

Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 5.90 71.86 -0.08 0.94 -166.03 154.22 -166.03 154.22 

LAG1 1.06 0.06 18.68 0.00 0.93 1.18 0.93 1.18 

 

Electricity Consumption 2024-25 = 5.90 + 1.06 ( LAG1 )   

                                                 = 5.90 + 1.06 ( 1739.09) 

    = 1847.16 BU  ( Billion Units )         

So, the forecasted electricity generation for 2024-25  is 1,847.16 billion units (BU) using the provided 

formula. 

 

Interpretation of Regression Results for Electricity Generation Using LAG1 Variable 

This regression analysis aims to examine the relationship between electricity generation (dependent 

variable) and its lagged value (LAG1) from the previous year, in order to forecast future generation. The 

results of the regression analysis are summarized below, along with an interpretation for a journal article. 

 

1. Regression Statistics Overview 

• Multiple R: 0.99 — The correlation coefficient of 0.99 indicates a very strong positive linear 

relationship between the actual and predicted values of electricity generation. This suggests that 

LAG1 is an excellent predictor of future generation levels. 

• R-squared: 0.97 — This means that 97% of the variance in electricity generation can be explained 

by the lagged value from the previous year (LAG1). The high R-squared value indicates a strong 

model fit. 

• Adjusted R-squared: 0.97 — The adjusted R-squared value confirms that the model does not 

overfit the data. Even after accounting for the number of predictors, the lagged variable remains a 

reliable predictor. 

• Standard Error: 40.66 — The standard error represents the average distance that the observed 

values fall from the regression line. A relatively low standard error indicates that the model's 

predictions are very close to the actual data. 
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2. ANOVA (Analysis of Variance) 

• F-statistic: 349.12 — The F-statistic assesses the overall significance of the model. A value this 

high, along with a Significance F value of 0.00, strongly suggests that the model is highly 

statistically significant. It indicates that LAG1 has a meaningful impact on predicting electricity 

generation, and the model is not due to chance. 

• Significance F: 0.00 — This extremely low p-value indicates that the regression model is 

statistically significant at any conventional level of significance, such as 0.05 or 0.01. The 

probability of obtaining this F-statistic by random chance is negligible. 

 

3. Coefficients and Interpretation 

• Intercept (5.90): The intercept represents the expected value of electricity generation when LAG1 

is zero. Since the intercept is not statistically significant (p-value = 0.94), it does not have much 

predictive power. In this context, the intercept is not crucial for interpreting the results but serves 

as a baseline when LAG1 is zero. 

• LAG1 (1.06): The coefficient for LAG1 indicates that for every 1-unit increase in the previous 

year’s electricity generation, the current year’s generation is expected to increase by 1.06 units. 

This positive coefficient suggests that past generation is a strong predictor of future generation. 

The p-value for LAG1 is 0.00, which is highly statistically significant. This result shows that the 

lagged value of electricity generation is a reliable predictor and confirms the importance of using 

LAG1 in forecasting future generation levels. 

 
The Standard Error of LAG1 (0.06) is relatively small, indicating that the estimate of the coefficient 

is precise. The t-statistic of 18.68, which is much greater than 2, indicates a very strong 

relationship between the independent variable (LAG1) and the dependent variable (current 

generation). 

 

4. Statistical Significance and Practical Implications 

• Significant Variable: LAG1 is highly statistically significant (p-value = 0.00), demonstrating that 

it is a crucial factor in predicting future electricity generation. Given that the coefficient for LAG1 

is positive (1.06), the model suggests that electricity generation follows a strong positive trend 

year over year, meaning that the previous year's generation has a clear influence on the next year's 

level. 

• Practical Implications: The high R-squared and significance of LAG1 make this model an 

effective tool for forecasting future electricity generation. For policymakers, energy producers, 

and planners, the analysis emphasizes the importance of recent trends in electricity generation for 

anticipating future demand and ensuring that sufficient resources are available.     

 

Results 

Regression Analysis Output 

The regression results indicate a highly significant relationship between the lagged value (LAG1) and 

current electricity generation. The Multiple R of 0.99 and R-squared value of 0.97 suggest a very strong 

fit of the model. The F-statistic of 349.12 (p-value = 0.00) confirms that the regression model is 

statistically significant. The coefficient for LAG1 is 1.06, indicating that for each unit increase in 

electricity generation from the previous year, there is a corresponding increase of 1.06 units in the current 

year’s generation. The p-value for LAG1 is 0.00, confirming that LAG1 is a highly significant predictor. 

The forecasted electricity generation for 2024-25   is 1,847.16 billion units (BU) using the provided 

formula 
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