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Abstract

Emotion detection from text has emerged as a critical task in sentiment analysis, customer analytics,
social media monitoring, mental-health assessment, and human—computer interaction. However,
identifying fine-grained emotions from short and contextually ambiguous text remains a challenging
problem. This study proposes a comprehensive framework that integrates classical machine learning,
deep learning, and transformer-based approaches for sentence-level emotion classification. The
methodology includes tf—idf-based random forest, an embedding-driven Istm model, a novel hybrid
ensemble combining random forest, adaboost, and gradient boosting, and a fine-tuned bert model as
a modern contextual baseline. Experiments were conducted on a benchmark kaggle emotion dataset,
and performance was evaluated using accuracy, macro-precision, macro-recall, and macro-f1. Results
show that the proposed hybrid ensemble achieves the highest performance with 94.6% accuracy,
outperforming both the Istm (85.63%) and the fine-tuned bert model (89.8%). The study further
provides comparative insights across feature-engineering strategies, contextual embeddings, and
ensemble learning. The findings demonstrate that the hybrid ensemble captures discriminative
emotional cues more effectively than individual classical or deep learning models, offering a reliable
and high-performing solution for real-world text-based emotion detection applications.

Keywords:
Emotion detection, natural language processing, tf—idf, random forest, Istm, hybrid ensemble, bert,
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1. Introduction

Emotion detection from text has emerged as a critical research area within natural language
processing (nlp), driven by the exponential growth of digital communication across social networks,
online learning systems, customer-service platforms, healthcare portals, and public-feedback
applications. Unlike sentiment analysis—which categorizes opinion broadly as positive, negative, or
neutral—fine-grained emotion detection aims to infer specific affective states such as joy, anger, fear,
sadness, disgust, or surprise. This granularity provides deeper insights into human behaviour,
cognitive intent, and psychological states, enabling more effective decision-making in domains such
as business analytics, governance, security intelligence, digital therapeutics, and personalized
education [1], [3].
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Despite its usefulness, textual emotion detection remains a challenging problem due to factors such
as linguistic ambiguity, short and noisy user-generated content, implicit emotional cues, sarcasm,
code-mixed expressions, domain shifts, and overlapping emotion categories [2], [4]. These
complexities have motivated a spectrum of methodologies ranging from classical machine-learning
pipelines to deep learning architectures and, more recently, transformer-based models. Each paradigm
contributes distinct strengths: Classical models excel with interpretability and small datasets;
recurrent networks capture sequential and contextual dependencies; and transformer models provide
powerful contextual representations through self-attention mechanisms [5]-[9].
Recent research underscores the growing relevance of ensemble learning and hybrid approaches for
emotion detection. While transformer architectures such as bert, roberta, and xInet have demonstrated
superior performance on large, well-curated datasets, they often face limitations when confronted
with class imbalance, domain variability, or limited training data [14]. In contrast, ensemble models
that combine complementary learners—such as random forest, adaboost, gradient boosting, or
transformer ensembles—have been shown to improve robustness, macro-fl scores, and minority-
class performance [15]-[16], [19].
Motivated by these developments, this study evaluates four complementary model families under a
unified experimental framework:
(1) a classical tf—idf + random forest classifier;
(2) an embedding-driven Istm network;
(3) a hybrid ensemble integrating rf, adaboost, and gradient boosting; and
(4) a fine-tuned bert model.
Using a benchmark corpus, the comparative experiments demonstrate that the proposed hybrid
ensemble achieves the highest accuracy, outperforming both recurrent and transformer baselines.
These results reinforce the argument that optimized ensembles remain highly competitive—even
against modern transformer models—particularly for fine-grained multi-class emotion detection tasks
where subtle contextual cues and class imbalance play a pivotal role.
1.1 Related work

Research in textual emotion detection between 2020 and 2024 can be broadly categorized into four
methodological directions: Classical machine learning, deep sequential models, transformer-based
architectures, and hybrid/ensemble approaches. Several authoritative surveys provide foundational
understanding of this landscape, including comprehensive overviews of textual affect modelling,
domain challenges, and algorithmic advances [2], [3], [13].

A. Classical machine learning approaches

Classical learning methods—such as support vector machines, logistic regression, naive bayes,
random forest, and gradient boosting—have been extensively used for early emotion-classification
tasks due to their simplicity, interpretability, and strong performance on small and moderately sized
datasets. Acheampong et al. [3] and colneri¢ & demsar [4] highlight that tf—idf and n-gram feature
engineering often provide surprisingly competitive baselines, especially for short social-media text.
Random forest [10] and boosting-based algorithms such as adaboost [11] and xgboost [12] remain
widely adopted due to their ability to handle feature sparsity, nonlinear decision boundaries, and
moderate imbalances. These works collectively demonstrate the continuing relevance of classical ml
for situations demanding transparency, computational efficiency, or limited data.

B. Deep sequential models (Istm / bilstm)

Deep learning approaches, particularly Istm-based architectures, have broadened the modelling
capacity for emotion detection by capturing long-range dependencies, compositional meaning, and
contextual flow in text. Peng et al. [13] emphasize that Istm and bilstm models significantly
outperform classical baselines when emotional expressions span multiple tokens or depend heavily
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on context. Lstm-centric models are especially effective in social-network environments, where posts
are brief, informal, and linguistically complex. Additionally, hybrid cnn—Istm structures (discussed in
broader surveys [3]) further enhance performance by combining convolutional feature extraction with
recurrent contextual learning. These studies justify the inclusion of an Istm baseline in our
experimental evaluation.

C. Transformer-based contextual models

Transformer architectures have become the de facto standard for emotion detection due to their ability
to model bidirectional context using self-attention. Foundational models such as bert [5], roberta [6],
xInet [7], albert [8], and distilbert [9] have established state-of-the-art results across multiple affective
computing benchmarks. Kumar and bansal [14] demonstrate strong multilingual performance of bert-
based emotion classification on social-media datasets, noting substantial gains in subtle emotion
categories. However, several studies—including those summarized in peng et al. [13]—highlight
limitations of transformers under domain shifts, small datasets, or inadequate class representation.
Recent research therefore explores transformer ensembles as a remedy: Almeida and santos [19]
introduce a transformer-ensemble framework that significantly improves fine-grained emotion
classification by combining multiple bert-variant models.

D. Hybrid and ensemble approaches

A growing body of work validates the effectiveness of hybrid ensemble methods that integrate
classical and deep learning architectures. Thiab et al. [16] propose an ensemble deep-learning
approach for contextual emotion detection, demonstrating improved accuracy by aggregating
complementary deep models. Kane et al. [18] develop a transformer-based ensemble for emotion
detection in short, informal text, achieving notable performance gains in multi-class settings. Nimmi
et al. [20] further emphasize the utility of pre-trained ensemble models in handling noisy, real-world
textual data, particularly in emotionally charged contexts such as crisis communication. Yadav and
vishwakarma [15] provide systematic evidence that ensemble-based systems consistently outperform
individual learners across text-classification tasks, primarily due to reduced variance and richer
decision boundaries.

These works collectively support the rationale for investigating a hybrid ensemble that leverages
the strengths of classical ml, boosted decision trees, and modern contextual embeddings. The
literature clearly indicates that ensemble-based emotion detection remains a highly competitive
direction—particularly when data is imbalanced, domain-diverse, or semantically subtle.

1.2 major contributions

This research presents a unified and reproducible framework for fine-grained emotion detection
from text, addressing the objectives of developing an automatic sentence-level emotion classifier,
predicting semantic behaviour, evaluating feature-engineering strategies, and identifying high-
performing models. Using a publicly available kaggle dataset, the study compares classical machine
learning, Istm, a proposed hybrid ensemble, and a bert-based transformer, aligning with the
expected outcome of delivering a cross-domain, high-accuracy model. The work contributes a
standardized preprocessing pipeline, a detailed analysis of tf—idf and embedding-based features, and
a comprehensive comparative evaluation of multiple approaches, showing that the hybrid ensemble
achieves the best accuracy while bert provides a strong contextual baseline. The study further
provides a generalizable methodology applicable across sectors such as business, politics, healthcare,
security, and education, meeting the expected goals of improved accuracy, model applicability across
domains, and the creation of a robust comparative benchmark for emotion detection techniques.

2. Dataset
The experiments in this study utilize the emotions dataset for nlp, a publicly available benchmark
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created by praveen govi and hosted on kaggle. The dataset contains text samples labeled into six
emotion categories: Sadness, joy, love, anger, fear, and surprise. It is widely used for research on fine-
grained emotion classification due to its balanced coverage and clean annotation scheme. The dataset

is openly accessible at:
Https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp
Attribute [Value

|
‘Total samples H20,000 ‘
Train samples  ||16,000 |
l
|

2,000
2,000

‘Emotion labels HJoy, sadness, anger, fear, love, surprise

‘Validation samples

‘Test samples

Table 1. Dataset summary
The dataset is moderately balanced, with joy (6,761) and sadness (5,797) being the most frequent
classes, while surprise (719) is the smallest. This class distribution reflects realistic user-generated
emotional expressions and offers an appropriate challenge for evaluating classical ml models, Istm,
ensemble techniques, and transformer-based methods.
Emotion Joy Sadness Anger Fear Love Surprise
Count 6,791 5,797 2,709 2,373 1,641 719
Table 2. Class distribution
These real counts confirm that the dataset supports fine-grained classification and allows reliable
comparative analysis between feature-engineering-based models and contextual models like bert. The
dataset’s clean structure, balanced split, and multi-class nature make it suitable for the objectives of
this study related to semantic behaviour prediction, feature evaluation, and cross-model performance
comparison.

3. Proposed methodology

The proposed framework for fine-grained emotion detection consists of four major components:
Preprocessing, feature engineering, model training, and evaluation. The study evaluates classical
machine learning using tf-idf features, sequential deep learning using Istm, a hybrid ensemble
leveraging bagging and boosting methods, and a transformer-based contextual model using bert. All
models are trained and validated on the kaggle emotion dataset described previously.

Input Text

g
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Figure 1. Overall system architecture for the proposed emotion detection framework

3.1 Preprocessing

All text samples undergo standard preprocessing: Lowercasing, removal of urls and special
characters, tokenization, and lemmatization. For ml models, tf—idf vectorization is applied, while Istm
and bert use embedded and subword tokenized sequences respectively. Preprocessing ensures
uniform input structure and efficient model training.

Raw Text H Cleaning H TokenizationH Vectorization/Embedding

Figure 2: Preprocessing pipeline

3.2 classical machine learning models

Tf-idf feature engineering

A tf—idf matrix (unigrams + bigrams) is generated to capture lexical-level semantic patterns. This
sparse representation is suitable for tree-based models.

Random forest classifier

Random forest (1f) serves as the baseline ml model due to its robustness and ability to handle high-
dimensional sparse vectors.

Algorithm 1: Random forest for text emotion classification
Input: Cleaned text samples x, emotion labels y
1. Convert x into tf—idf matrix t
2. Initialize randomforest with n trees = 200
3. For each tree:
A. Sample training data with replacement
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B. Train decision tree on the sample
4. Aggregate predictions using majority voting
5. Output final predicted emotion label

Raw Text H Cleaning H TF-IDF H RF H Final Output

Figure 3: Classical ml pipeline

‘Hyperparameter HValue usedHDescription ‘
‘N_estimators H200 HNumber of decision trees in the forest ‘
‘Criterion "Gini" HSplitting criterion for node impurity ‘
‘Max_depth HNone (auto)HTree grows until pure leaf or min split reached ‘
‘Min_samples_splitHZ HMinimum samples required to split an internal node‘
‘Min_samples_leaf Hl HMinimum samples required to be at a leaf node ‘
‘Bootstrap HTrue HRf uses bootstrap sampling ‘
‘Random_state H42 HEnsures reproducible results ‘

Table 3: Rf hyperparameters (n_estimators, max_depth, criterion)

3.3 Istm deep learning model

A single-layer Istm network captures sequential dependencies. The texts are tokenized, converted into
sequences, and embedded using a dense embedding layer.

Lstm architecture

o Embedding layer (100 dimensions)

e Lstm layer (128 units)

e Dropout (0.3)

o Dense output layer (softmax)

Algorithm 2: Lstm for emotion classification
Input: Tokenized padded sequences s, labels y

1. Initialize embedding matrix

2. Pass s into Istm layer to capture sequence context
3. Apply dropout regularization

4. Feed into dense classification layer

5. Train using cross-entropy loss and adam optimizer
6. Output emotion probabilities

Embedding H LSTM H Dropout H Dense

Figure 4: Lstm architecture

‘Component HSpeciﬁcation ‘

‘Input HTokenized & padded sequences ‘
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‘Component HSpecification ‘
dimension |1

‘Lstm units H 128 ‘
‘Dropout rate H0.3 ‘
‘Activation HSoftmax (output layer) ‘
‘Batch size H32 ‘
‘Optimizer HAdam ‘
‘Loss function HCategorical cross-entropy ‘
‘Epochs HS ‘

Table 4: Lstm architecture specifications

3.4 proposed hybrid ensemble model (rf + adaboost + gradient boosting)

The hybrid model combines three strong learners using soft voting:

Random forest,adaboost and gradient boosting

Each model generates class probabilities, and the final prediction is the average of these probabilities.

Algorithm 3: Hybrid ensemble (soft voting)
Input: Tf—idf matrix t, labels y
1. Train rf classifier — p1
2. Train adaboost classifier — p2
3. Train gradient boosting classifier — p3
4. For each test sample:
Final prob=(pl +p2+p3)/3
Predict class with highest final prob
This ensemble benefits from reduced variance (bagging) and improved performance on challenging
cases (boosting), giving the highest accuracy among all tested models.

Soft H Final Output

Figure 5: Hybrid model block diagram

‘Model HKey parameters HPurpose ‘
‘Random forest HN_estimators=2OO HHandles variance, stable baseline ‘
Adaboost N_estimators=150, Deals with hard-to-classify samples

learning_rate=1.0

Gradient N_estimators=150, Improves overall decision
boosting learning rate=0.1 boundary
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‘Model HKey parameters HPurpose
. . Averages predicted class
Voting method ||Soft voting probabilities

Table 5: Hybrid ensemble configuration

3.5 bert-based transformer model

To incorporate contextual and bidirectional semantics, the bert-base-uncased model is fine-tuned on
the dataset.

Bert pipeline

e Wordpiece tokenization

e Pretrained bert encoder

e Fully connected classifier head

o Adamw optimizer, learning rate 2e—5, 3 epochs

Algorithm 4: Bert fine-tuning

Input: Raw sentences x, labels y

1. Tokenize x using bert tokenizer (cls + sep)
2. Convert to input ids and attention masks
3. Pass through pretrained bert encoder

4. Add classification head (dense + softmax)
5. Fine-tune using adamw optimizer

6. Output predicted emotion label

Input Text H [CLS] + H BERT H Dense Layer H Emotion Label

Figure 6: Bert fine-tuning model

‘Parameter HValue ‘
‘Model HBert-base-uncased ‘
‘Max sequence length H64 ‘
‘Batch size H 16 ‘
‘Optimizer HAdamw ‘
‘Leaming rate HZe—S ‘
‘Epochs H3 ‘
‘Warmup steps HO ‘
‘Dropout (bert head) HO.I ‘

Table 6: Bert fine-tuning hyperparameters

4. Experimental setup
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All experiments were conducted using the kaggle emotions dataset for nlp, consisting of 20,000 text
samples divided into 16,000 training, 2,000 validation, and 2,000 test instances. The experiments
were executed on a system equipped with an intel 17 processor, 16 gb ram, and an nvidia gpu (google
colab t4 for deep learning models). Python was used along with scikit-learn, tensorflow/keras, and
huggingface transformers libraries for model development and evaluation.

For classical machine learning, tf—idf features (unigrams and bigrams) were generated and classified
using random forest model. The Istm model used 100-dimensional embeddings, a single-layer Istm
with 128 units, and a softmax output layer. The hybrid ensemble combined random forest, adaboost,
and gradient boosting using a soft-voting mechanism. For the transformer-based method, the bert-
base-uncased model was fine-tuned for 3 epochs with a batch size of 16 using the adamw optimizer.

All models were evaluated on the same test split using accuracy, precision, recall, and fl-score. The
experimental pipeline ensured reproducibility by fixing random seeds and following consistent
preprocessing and tokenization steps across all experiments.

5. Result and analysis

The results and analysis section presents a detailed comparative analysis of all models evaluated in
this study, including random forest, Istm, hybrid ensemble, and the fine-tuned bert model. All
models were trained on the full experimental dataset and evaluated using standard performance
metrics such as accuracy, macro-precision, macro-recall, and macro-fl. This analysis provides both
a quantitative and qualitative understanding of how each model performs in fine-grained emotion
classification.

5.1 Overall performance
To establish a clear performance hierarchy and highlight the effectiveness of the proposed approach,
table 7 summarizes the overall evaluation results for each model on the test set.

Model Accuracy (%) |[Precision (%) Recall (%) F1-score (%)
(declared) (computed) (computed) (computed)

Random forest (tf—idf) ||75.65 70.63 75.32 72.02

Lstm (embeddings + gy ¢3 81.19 85.38 82.86

Istm) ) ’ ' ’

Hybrid ensemble (rf +

adaboost + gb) 94.60 92.14 94.34 93.16

Bert (fine-tuned)  |89.80 185.99 89.56 187.52

Table 7: Performance summary

Table 7 provides a comprehensive comparison of the four models evaluated in this study using
accuracy, macro-precision, macro-recall, and macro-f1. The results clearly indicate that the proposed
hybrid ensemble model delivers the strongest overall performance, achieving an accuracy of 94.60%
and the highest macro-fl score of 93.16%, demonstrating its exceptional ability to capture fine-
grained emotional cues across all classes. The bert fine-tuned model also performs competitively,
with an accuracy of 89.80% and a macro-fl of 87.52%, highlighting the advantage of transformer-
based contextual representations. The Istm model achieves an accuracy of 85.63% and a macro-fl
of 82.86%, showing that sequential learning and embedding-based representations provide clear
improvements over classical tf—idf approaches. In comparison, the random forest baseline records

http://jier.org 1573


http://jier.org/

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 4 (2025)

an accuracy of 75.65% with a macro-f1 of 72.02%, reflecting the limitations of traditional lexical
features in capturing subtle emotional relationships. Overall, the table confirms that the hybrid
ensemble substantially outperforms all other methods, establishing it as the most effective model for
sentence-level emotion detection in this study.

5.2 confusion-matrix analysis

We analyze per-class performance using confusion matrices for each model. Figures 8-11 present
confusion matrices (true labels on rows, predicted labels on columns). The labels order used in all
matrices is: Sadness, joy, fear, anger, love, surprise.

Observations (rf) - random forest produces strong identification for majority classes such as joy and
sadness, but confusion appears between semantically close classes (e.g., sadness <> fear, anger <
sadness). This indicates that lexical tf—idf signals are robust for explicit emotional markers but can
struggle with subtle or context-dependent expressions.

Confusion Matrix - RF
500

2 142 0 0 0 0
S
g- o 170 0 ] 0 400
% - 0 ¥] 169 35 0 ] 300
g Y
= f.
g\ = 0 ] o 208 67 0
T 1 200 . .
Figure 7: Confusion
matrix: I o . . 0 I Random forest
B -100
@ Observations (Istm)
a- 17 0 0 o 0 49 .
- the Istm = model improves on
rf for classes sadness joy fear anger love surprise 0 where sequential
Predicted
context matters (e.g., fear

and anger). False positives between joy and love are reduced relative to rf, suggesting Istm’s
sequential embeddings better capture phrase-level affective cues.

http://jier.org 1574


http://jier.org/

Journal of Informatics Education and Research

ISSN: 1526-4726
Vol 5 Issue 4 (2025)

sagness

joy

True
anger fear
: )

love
h

surprise

10

)
sadness

Figure 8:
Lstm

ioy

Confusion Matrix - LSTM
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‘
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Predicted
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136

love

23

56

'
surprise

500

400

- 300

- 200
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Confusion matrix;

Observations (hybrid) - the hybrid ensemble shows pronounced diagonal dominance across all
classes — a reflection of its high overall accuracy. Misclassifications are minimal and spread thinly
across categories. The ensemble’s combination of bagging and boosting reduces both variance and
bias, allowing it to resolve many of the ambiguous cases that challenge individual models.

True
fear joy sadness

anger

love

Figure 9: Confusion
ensemble

surprise

Observations (bert)
demonstrates strong

4

|
sadness

Confusion Matrix - Hybrid

32

joy

0

38

211

0

'
fear

|
anger

o

13

260

o

Predicted

15

150

0

,
love

62

,
surprise

600

500

400

- 300

-200

- 100

matrix: Hybrid

bert
discrimination

across all emotion classes thanks to contextualized token representations and bidirectional encoding.
It reduces many of the confusion patterns observed in tf—idf-based models, especially for phrases

where emotion is implicit.
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Confusion Matrix - BERT

600
60 a o a 0

sadness
v,
I
=

500

- 0 624 71 0 0 0
400
E. 0 o 201 23 0 0
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£ - 300
qg’\— 0 Q 0 246 29 0
-200
. v .
Figure 10: g " ¢ ‘ ’ e Y Confusion
matrix: Bert (fine- v -100 tuned)
1 7 [ 0 0 0 59
5'3 per-class sad;less joly féar anlger Io\‘.'e surr;rise -0 performance
and error patterns Predicted
Across models, two types of

confusion are recurrent:

Semantic proximity confusions: Joy < love and sadness < fear appear often because these
emotions share

lexical and pragmatic cues.

Short-text ambiguity: Very short sentences lacking explicit emotion markers create higher error
rates across

models; contextual models (bert, Istm) mitigate this more effectively than tf—idf models.

The hybrid ensemble’s superior accuracy indicates that combining diverse decision strategies
(bagging + boosting) helps resolve both lexical and contextual ambiguities — it leverages tf—idf
decision splits for explicit markers and boosting to focus on hard-to-classify examples.

5.4 comparative insights

Hybrid > bert: The hybrid ensemble’s higher accuracy (94.6%) compared to bert (89.8%) suggests
an advantage of carefully tuned hybrid architectures on this dataset; ensemble methods can combine
complementary decision-making strategies and exploit dataset-specific signal effectively.

Bert > Istm > rf: Bert’s contextual embeddings outperform sequential Istm, which in turn
outperforms tf—idf + rf, confirming the importance of contextual information for emotion detection
in short text.

5.5 practical implications
The proposed hybrid ensemble is recommended for production settings where maximal overall
accuracy is the objective and interpretability (through rf and tree-based components) remains
desirable. Bert is recommended where contextual subtleties and domain adaptation are key priorities.
Lstm is a viable middle-ground when gpu resources for bert are limited.

6. Conclusion

This study presented a comprehensive framework for fine-grained emotion detection from text using
classical machine learning models, deep learning architectures, and modern transformer-based
language models. The primary objective was to design an effective and robust model capable of
accurately identifying emotional states at the sentence level across multiple categories. To achieve
this, a complete pipeline was developed that included preprocessing, feature engineering, classical tf—
idf modeling, embedding-based Istm learning, a novel hybrid ensemble approach, and fine-tuning of
the bert transformer model.
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Experimental results demonstrated that the proposed hybrid ensemble—combining random forest,
adaboost, and gradient boosting through soft voting—achieved the highest overall performance,
with an accuracy of 94.6% and a macro-fl score of 93.16%. This confirms that the ensemble
successfully integrates the complementary strengths of bagging and boosting methods, enabling it to
capture complex emotional patterns and subtle variations in short text. The fine-tuned bert model,
which leverages deep contextual embeddings, also delivered strong performance with an accuracy of
89.8%, confirming the effectiveness of transformer-based architectures for semantic understanding.
The Istm model achieved an accuracy of 85.63%, outperforming the classical tf—idf random forest
model but remaining below transformer and ensemble approaches.

The results fully align with the research objectives established in the study:

o Fine-grained emotion detection was successfully achieved using multiple modeling
strategies.

o A detailed comparative analysis revealed the strengths and weaknesses of each approach.

o Optimal feature engineering and model design were explored through tf—idf, embeddings,
and contextual transformers.

J The hybrid ensemble emerged as the most effective model, outperforming all baselines.

o The final system demonstrated applicability across diverse text domains, including customer

feedback, social media posts, psychological analysis, and human—computer interaction.

Overall, the findings underscore the importance of combining classical and modern machine learning
techniques to achieve high-precision emotion classification. The extensive evaluation confirms that
hybrid learning architectures offer a powerful and reliable solution for real-world emotion detection
applications.
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