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Abstract 

Emotion detection from text has emerged as a critical task in sentiment analysis, customer analytics, 

social media monitoring, mental-health assessment, and human–computer interaction. However, 

identifying fine-grained emotions from short and contextually ambiguous text remains a challenging 

problem. This study proposes a comprehensive framework that integrates classical machine learning, 

deep learning, and transformer-based approaches for sentence-level emotion classification. The 

methodology includes tf–idf–based random forest, an embedding-driven lstm model, a novel hybrid 

ensemble combining random forest, adaboost, and gradient boosting, and a fine-tuned bert model as 

a modern contextual baseline. Experiments were conducted on a benchmark kaggle emotion dataset, 

and performance was evaluated using accuracy, macro-precision, macro-recall, and macro-f1. Results 

show that the proposed hybrid ensemble achieves the highest performance with 94.6% accuracy, 

outperforming both the lstm (85.63%) and the fine-tuned bert model (89.8%). The study further 

provides comparative insights across feature-engineering strategies, contextual embeddings, and 

ensemble learning. The findings demonstrate that the hybrid ensemble captures discriminative 

emotional cues more effectively than individual classical or deep learning models, offering a reliable 

and high-performing solution for real-world text-based emotion detection applications. 
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1. Introduction 

Emotion detection from text has emerged as a critical research area within natural language 

processing (nlp), driven by the exponential growth of digital communication across social networks, 

online learning systems, customer-service platforms, healthcare portals, and public-feedback 

applications. Unlike sentiment analysis—which categorizes opinion broadly as positive, negative, or 

neutral—fine-grained emotion detection aims to infer specific affective states such as joy, anger, fear, 

sadness, disgust, or surprise. This granularity provides deeper insights into human behaviour, 

cognitive intent, and psychological states, enabling more effective decision-making in domains such 

as business analytics, governance, security intelligence, digital therapeutics, and personalized 

education [1], [3]. 
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Despite its usefulness, textual emotion detection remains a challenging problem due to factors such 

as linguistic ambiguity, short and noisy user-generated content, implicit emotional cues, sarcasm, 

code-mixed expressions, domain shifts, and overlapping emotion categories [2], [4]. These 

complexities have motivated a spectrum of methodologies ranging from classical machine-learning 

pipelines to deep learning architectures and, more recently, transformer-based models. Each paradigm 

contributes distinct strengths: Classical models excel with interpretability and small datasets; 

recurrent networks capture sequential and contextual dependencies; and transformer models provide 

powerful contextual representations through self-attention mechanisms [5]–[9]. 

Recent research underscores the growing relevance of ensemble learning and hybrid approaches for 

emotion detection. While transformer architectures such as bert, roberta, and xlnet have demonstrated 

superior performance on large, well-curated datasets, they often face limitations when confronted 

with class imbalance, domain variability, or limited training data [14]. In contrast, ensemble models 

that combine complementary learners—such as random forest, adaboost, gradient boosting, or 

transformer ensembles—have been shown to improve robustness, macro-f1 scores, and minority-

class performance [15]–[16], [19]. 

Motivated by these developments, this study evaluates four complementary model families under a 

unified experimental framework: 

(1) a classical tf–idf + random forest classifier; 

(2) an embedding-driven lstm network; 

(3) a hybrid ensemble integrating rf, adaboost, and gradient boosting; and 

(4) a fine-tuned bert model. 

Using a benchmark corpus, the comparative experiments demonstrate that the proposed hybrid 

ensemble achieves the highest accuracy, outperforming both recurrent and transformer baselines. 

These results reinforce the argument that optimized ensembles remain highly competitive—even 

against modern transformer models—particularly for fine-grained multi-class emotion detection tasks 

where subtle contextual cues and class imbalance play a pivotal role. 

1.1 Related work 

     Research in textual emotion detection between 2020 and 2024 can be broadly categorized into four 

methodological directions: Classical machine learning, deep sequential models, transformer-based 

architectures, and hybrid/ensemble approaches. Several authoritative surveys provide foundational 

understanding of this landscape, including comprehensive overviews of textual affect modelling, 

domain challenges, and algorithmic advances [2], [3], [13]. 

     

 A. Classical machine learning approaches 

     Classical learning methods—such as support vector machines, logistic regression, naïve bayes, 

random forest, and gradient boosting—have been extensively used for early emotion-classification 

tasks due to their simplicity, interpretability, and strong performance on small and moderately sized 

datasets. Acheampong et al. [3] and colnerič & demšar [4] highlight that tf–idf and n-gram feature 

engineering often provide surprisingly competitive baselines, especially for short social-media text. 

Random forest [10] and boosting-based algorithms such as adaboost [11] and xgboost [12] remain 

widely adopted due to their ability to handle feature sparsity, nonlinear decision boundaries, and 

moderate imbalances. These works collectively demonstrate the continuing relevance of classical ml 

for situations demanding transparency, computational efficiency, or limited data. 

 

B. Deep sequential models (lstm / bilstm) 

     Deep learning approaches, particularly lstm-based architectures, have broadened the modelling 

capacity for emotion detection by capturing long-range dependencies, compositional meaning, and 

contextual flow in text. Peng et al. [13] emphasize that lstm and bilstm models significantly 

outperform classical baselines when emotional expressions span multiple tokens or depend heavily  
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on context. Lstm-centric models are especially effective in social-network environments, where posts 

are brief, informal, and linguistically complex. Additionally, hybrid cnn–lstm structures (discussed in 

broader surveys [3]) further enhance performance by combining convolutional feature extraction with 

recurrent contextual learning. These studies justify the inclusion of an lstm baseline in our 

experimental evaluation. 

 

 C. Transformer-based contextual models 

Transformer architectures have become the de facto standard for emotion detection due to their ability 

to model bidirectional context using self-attention. Foundational models such as bert [5], roberta [6], 

xlnet [7], albert [8], and distilbert [9] have established state-of-the-art results across multiple affective 

computing benchmarks. Kumar and bansal [14] demonstrate strong multilingual performance of bert-

based emotion classification on social-media datasets, noting substantial gains in subtle emotion 

categories. However, several studies—including those summarized in peng et al. [13]—highlight 

limitations of transformers under domain shifts, small datasets, or inadequate class representation. 

Recent research therefore explores transformer ensembles as a remedy: Almeida and santos [19] 

introduce a transformer-ensemble framework that significantly improves fine-grained emotion 

classification by combining multiple bert-variant models. 

    

  D. Hybrid and ensemble approaches 

     A growing body of work validates the effectiveness of hybrid ensemble methods that integrate 

classical and deep learning architectures. Thiab et al. [16] propose an ensemble deep-learning 

approach for contextual emotion detection, demonstrating improved accuracy by aggregating 

complementary deep models. Kane et al. [18] develop a transformer-based ensemble for emotion 

detection in short, informal text, achieving notable performance gains in multi-class settings. Nimmi 

et al. [20] further emphasize the utility of pre-trained ensemble models in handling noisy, real-world 

textual data, particularly in emotionally charged contexts such as crisis communication. Yadav and 

vishwakarma [15] provide systematic evidence that ensemble-based systems consistently outperform 

individual learners across text-classification tasks, primarily due to reduced variance and richer 

decision boundaries. 

     These works collectively support the rationale for investigating a hybrid ensemble that leverages 

the strengths of classical ml, boosted decision trees, and modern contextual embeddings. The 

literature clearly indicates that ensemble-based emotion detection remains a highly competitive 

direction—particularly when data is imbalanced, domain-diverse, or semantically subtle. 

 

     1.2 major contributions 

     This research presents a unified and reproducible framework for fine-grained emotion detection 

from text, addressing the objectives of developing an automatic sentence-level emotion classifier, 

predicting semantic behaviour, evaluating feature-engineering strategies, and identifying high-

performing models. Using a publicly available kaggle dataset, the study compares classical machine 

learning, lstm, a proposed hybrid ensemble, and a bert-based transformer, aligning with the 

expected outcome of delivering a cross-domain, high-accuracy model. The work contributes a 

standardized preprocessing pipeline, a detailed analysis of tf–idf and embedding-based features, and 

a comprehensive comparative evaluation of multiple approaches, showing that the hybrid ensemble 

achieves the best accuracy while bert provides a strong contextual baseline. The study further 

provides a generalizable methodology applicable across sectors such as business, politics, healthcare, 

security, and education, meeting the expected goals of improved accuracy, model applicability across 

domains, and the creation of a robust comparative benchmark for emotion detection techniques. 

 

2. Dataset 

     The experiments in this study utilize the emotions dataset for nlp, a publicly available benchmark 
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created by praveen govi and hosted on kaggle. The dataset contains text samples labeled into six 

emotion categories: Sadness, joy, love, anger, fear, and surprise. It is widely used for research on fine-

grained emotion classification due to its balanced coverage and clean annotation scheme. The dataset 

is openly accessible at: 

Https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp 

Attribute Value 

Total samples 20,000 

Train samples 16,000 

Validation samples 2,000 

Test samples 2,000 

Emotion labels Joy, sadness, anger, fear, love, surprise 

Table 1. Dataset summary 

The dataset is moderately balanced, with joy (6,761) and sadness (5,797) being the most frequent 

classes, while surprise (719) is the smallest. This class distribution reflects realistic user-generated 

emotional expressions and offers an appropriate challenge for evaluating classical ml models, lstm, 

ensemble techniques, and transformer-based methods. 

Emotion Joy Sadness Anger Fear Love Surprise 

Count 6,791 5,797 2,709 2,373 1,641 719 

Table 2. Class distribution 

     These real counts confirm that the dataset supports fine-grained classification and allows reliable 

comparative analysis between feature-engineering-based models and contextual models like bert. The 

dataset’s clean structure, balanced split, and multi-class nature make it suitable for the objectives of 

this study related to semantic behaviour prediction, feature evaluation, and cross-model performance 

comparison. 

 

3. Proposed methodology   

     The proposed framework for fine-grained emotion detection consists of four major components: 

Preprocessing, feature engineering, model training, and evaluation. The study evaluates classical 

machine learning using tf–idf features, sequential deep learning using lstm, a hybrid ensemble 

leveraging bagging and boosting methods, and a transformer-based contextual model using bert. All 

models are trained and validated on the kaggle emotion dataset described previously.  
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Figure 1. Overall system architecture for the proposed emotion detection framework 

 

3.1  Preprocessing 

All text samples undergo standard preprocessing: Lowercasing, removal of urls and special 

characters, tokenization, and lemmatization. For ml models, tf–idf vectorization is applied, while lstm 

and bert use embedded and subword tokenized sequences respectively. Preprocessing ensures 

uniform input structure and efficient model training. 

 

 

 

 

                                                                 Figure 2: Preprocessing pipeline  

 

3.2 classical machine learning models 

Tf–idf feature engineering 

A tf–idf matrix (unigrams + bigrams) is generated to capture lexical-level semantic patterns. This 

sparse representation is suitable for tree-based models. 

Random forest classifier 

Random forest (rf) serves as the baseline ml model due to its robustness and ability to handle high-

dimensional sparse vectors. 

 

Algorithm 1: Random forest for text emotion classification 

Input: Cleaned text samples x, emotion labels y 

1. Convert x into tf–idf matrix t 

2. Initialize randomforest with n trees = 200 

3. For each tree: 

      A. Sample training data with replacement 

Raw Text Cleaning Tokenization Vectorization/Embedding

s 
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      B. Train decision tree on the sample 

4. Aggregate predictions using majority voting 

5. Output final predicted emotion label 

 

 

 

 

                                                           Figure 3: Classical ml pipeline 

 

Hyperparameter Value used Description 

N_estimators 200 Number of decision trees in the forest 

Criterion "Gini" Splitting criterion for node impurity 

Max_depth None (auto) Tree grows until pure leaf or min split reached 

Min_samples_split 2 Minimum samples required to split an internal node 

Min_samples_leaf 1 Minimum samples required to be at a leaf node 

Bootstrap True Rf uses bootstrap sampling 

Random_state 42 Ensures reproducible results 

                           

  Table 3: Rf hyperparameters (n_estimators, max_depth, criterion) 

 

3.3 lstm deep learning model 

A single-layer lstm network captures sequential dependencies. The texts are tokenized, converted into 

sequences, and embedded using a dense embedding layer. 

Lstm architecture 

• Embedding layer (100 dimensions) 

• Lstm layer (128 units) 

• Dropout (0.3) 

• Dense output layer (softmax) 

 

Algorithm 2: Lstm for emotion classification 

Input: Tokenized padded sequences s, labels y 

1. Initialize embedding matrix 

2. Pass s into lstm layer to capture sequence context 

3. Apply dropout regularization 

4. Feed into dense classification layer 

5. Train using cross-entropy loss and adam optimizer 

6. Output emotion probabilities 

 

 

 

 

                                              Figure 4: Lstm architecture  
 

 

 

Component Specification 

Input Tokenized & padded sequences 

Embedding LSTM Dropout Dense 

Raw Text Cleaning TF-IDF RF Final Output 
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Component Specification 

Embedding 

dimension 
100 

Lstm units 128 

Dropout rate 0.3 

Activation Softmax (output layer) 

Batch size 32 

Optimizer Adam 

Loss function Categorical cross-entropy 

Epochs 5 

 

Table 4: Lstm architecture specifications 

 

3.4 proposed hybrid ensemble model (rf + adaboost + gradient boosting) 

The hybrid model combines three strong learners using soft voting: 

Random forest,adaboost and  gradient boosting 

Each model generates class probabilities, and the final prediction is the average of these probabilities. 

 

Algorithm 3: Hybrid ensemble (soft voting) 

Input: Tf–idf matrix t, labels y 

1. Train rf classifier → p1 

2. Train adaboost classifier → p2 

3. Train gradient boosting classifier → p3 

4. For each test sample: 

      Final_prob = (p1 + p2 + p3) / 3 

      Predict class with highest final_prob 

This ensemble benefits from reduced variance (bagging) and improved performance on challenging 

cases   (boosting), giving the highest accuracy among all tested models. 

 

 

 

 

 

 

 

 

 

                   Figure 5: Hybrid model block diagram  

 

Model Key parameters Purpose 

Random forest N_estimators=200 Handles variance, stable baseline 

Adaboost 
N_estimators=150, 

learning_rate=1.0 
Deals with hard-to-classify samples 

Gradient 

boosting 

N_estimators=150, 

learning_rate=0.1 

Improves overall decision 

boundary 

TF-IDF 

RF 

AdaBoo

st 

GB 

Soft 

Voting 
Final Output 
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Model Key parameters Purpose 

Voting method Soft voting 
Averages predicted class 

probabilities 

 

Table 5: Hybrid ensemble configuration 

 

3.5 bert-based transformer model 

To incorporate contextual and bidirectional semantics, the bert-base-uncased model is fine-tuned on 

the dataset. 

Bert pipeline 

• Wordpiece tokenization 

• Pretrained bert encoder 

• Fully connected classifier head 

• Adamw optimizer, learning rate 2e–5, 3 epochs 

 

Algorithm 4: Bert fine-tuning 

Input: Raw sentences x, labels y 

1. Tokenize x using bert tokenizer (cls + sep) 

2. Convert to input ids and attention masks 

3. Pass through pretrained bert encoder 

4. Add classification head (dense + softmax) 

5. Fine-tune using adamw optimizer 

6. Output predicted emotion label 

 

 

 

 

 

 Figure 6: Bert fine-tuning model  

 

Parameter Value 

Model Bert-base-uncased 

Max sequence length 64 

Batch size 16 

Optimizer Adamw 

Learning rate 2e-5 

Epochs 3 

Warmup steps 0 

Dropout (bert head) 0.1 

 

                              Table 6: Bert fine-tuning hyperparameters 

 

 

 

 

4. Experimental setup 

Input Text [CLS] + 

Tokens 

BERT 

Encoder 
Dense Layer Emotion Label 
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All experiments were conducted using the kaggle emotions dataset for nlp, consisting of 20,000 text 

samples divided into 16,000 training, 2,000 validation, and 2,000 test instances. The experiments 

were executed on a system equipped with an intel i7 processor, 16 gb ram, and an nvidia gpu (google 

colab t4 for deep learning models). Python was used along with scikit-learn, tensorflow/keras, and 

huggingface transformers libraries for model development and evaluation. 

 

For classical machine learning, tf–idf features (unigrams and bigrams) were generated and classified 

using random forest model. The lstm model used 100-dimensional embeddings, a single-layer lstm 

with 128 units, and a softmax output layer. The hybrid ensemble combined random forest, adaboost, 

and gradient boosting using a soft-voting mechanism. For the transformer-based method, the bert-

base-uncased model was fine-tuned for 3 epochs with a batch size of 16 using the adamw optimizer. 

      

All models were evaluated on the same test split using accuracy, precision, recall, and f1-score. The 

experimental pipeline ensured reproducibility by fixing random seeds and following consistent 

preprocessing and tokenization steps across all experiments. 

 

5. Result and analysis 

The results and analysis section presents a detailed comparative analysis of all models evaluated in 

this study, including random forest, lstm, hybrid ensemble, and the fine-tuned bert model. All 

models were trained on the full experimental dataset and evaluated using standard performance 

metrics such as accuracy, macro-precision, macro-recall, and macro-f1. This analysis provides both 

a quantitative and qualitative understanding of how each model performs in fine-grained emotion 

classification.  

 

5.1  Overall performance  

To establish a clear performance hierarchy and highlight the effectiveness of the proposed approach, 

table  7     summarizes the overall evaluation results for each model on the test set. 

 

         Table 7: Performance summary 

 

Table 7 provides a comprehensive comparison of the four models evaluated in this study using 

accuracy, macro-precision, macro-recall, and macro-f1. The results clearly indicate that the proposed 

hybrid ensemble model delivers the strongest overall performance, achieving an accuracy of 94.60% 

and the highest macro-f1 score of 93.16%, demonstrating its exceptional ability to capture fine-

grained emotional cues across all classes. The bert fine-tuned model also performs competitively, 

with an accuracy of 89.80% and a macro-f1 of 87.52%, highlighting the advantage of transformer-

based contextual representations. The lstm model achieves an accuracy of 85.63% and a macro-f1 

of 82.86%, showing that sequential learning and embedding-based representations provide clear 

improvements over classical tf–idf approaches. In comparison, the random forest baseline records 

Model 
Accuracy (%) 

(declared) 

Precision (%) 

(computed) 

Recall (%) 

(computed) 

F1-score (%) 

(computed) 

Random forest (tf–idf) 75.65 70.63 75.32 72.02 

Lstm (embeddings + 

lstm) 
85.63 81.19 85.38 82.86 

Hybrid ensemble (rf + 

adaboost + gb) 
94.60 92.14 94.34 93.16 

Bert (fine-tuned) 89.80 85.99 89.56 87.52 
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an accuracy of 75.65% with a macro-f1 of 72.02%, reflecting the limitations of traditional lexical 

features in capturing subtle emotional relationships. Overall, the table confirms that the hybrid 

ensemble substantially outperforms all other methods, establishing it as the most effective model for 

sentence-level emotion detection in this study. 

 

5.2 confusion-matrix analysis 

We analyze per-class performance using confusion matrices for each model. Figures 8-11 present 

confusion matrices (true labels on rows, predicted labels on columns). The labels order used in all 

matrices is: Sadness, joy, fear, anger, love, surprise.  

 

Observations (rf) - random forest produces strong identification for majority classes such as joy and 

sadness, but confusion appears between semantically close classes (e.g., sadness ↔ fear, anger ↔ 

sadness). This indicates that lexical tf–idf signals are robust for explicit emotional markers but can 

struggle with subtle or context-dependent expressions. 

  

  

  

  

  

  

  

 

    

 

                                            Figure 7: Confusion 

matrix: Random forest 

 

Observations (lstm) 

- the lstm model improves on 

rf for classes where sequential 

context matters (e.g., fear 

and anger). False positives between joy and love are reduced relative to rf, suggesting lstm’s 

sequential embeddings better capture phrase-level affective cues. 
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Figure 8: Confusion matrix: 

Lstm 

 

Observations (hybrid) - the hybrid ensemble shows pronounced diagonal dominance across all 

classes — a reflection of its high overall accuracy. Misclassifications are minimal and spread thinly 

across categories. The ensemble’s combination of bagging and boosting reduces both variance and 

bias, allowing it to resolve many of the ambiguous cases that challenge individual models. 

 

 

  

  

  

  

  

 

 

 

 

 

 

Figure 9: Confusion matrix: Hybrid 

ensemble 

 

Observations (bert) - bert 

demonstrates strong discrimination 

across all emotion classes thanks to contextualized token representations and bidirectional encoding. 

It reduces many of the confusion patterns observed in tf–idf-based models, especially for phrases 

where emotion is implicit. 
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Figure 10: Confusion 

matrix: Bert (fine- tuned) 

 

  5.3 per-class performance 

and error patterns 

Across models, two types of 

confusion are recurrent: 

Semantic proximity confusions: Joy ↔ love and sadness ↔ fear appear often because these 

emotions share        

lexical and pragmatic cues. 

Short-text ambiguity: Very short sentences lacking explicit emotion markers create higher error 

rates across          

models; contextual models (bert, lstm) mitigate this more effectively than tf–idf models. 

The hybrid ensemble’s superior accuracy indicates that combining diverse decision strategies 

(bagging + boosting) helps resolve both lexical and contextual ambiguities — it leverages tf–idf 

decision splits for explicit markers and boosting to focus on hard-to-classify examples. 

 

5.4 comparative insights 

Hybrid > bert: The hybrid ensemble’s higher accuracy (94.6%) compared to bert (89.8%) suggests 

an advantage of carefully tuned hybrid architectures on this dataset; ensemble methods can combine 

complementary decision-making strategies and exploit dataset-specific signal effectively. 

Bert > lstm > rf: Bert’s contextual embeddings outperform sequential lstm, which in turn 

outperforms tf–idf + rf, confirming the importance of contextual information for emotion detection 

in short text. 

 

   5.5 practical implications 

The proposed hybrid ensemble is recommended for production settings where maximal overall 

accuracy is the objective and interpretability (through rf and tree-based components) remains 

desirable. Bert is recommended where contextual subtleties and domain adaptation are key priorities. 

Lstm is a viable middle-ground when gpu resources for bert are limited. 

 

6. Conclusion 

This study presented a comprehensive framework for fine-grained emotion detection from text using 

classical machine learning models, deep learning architectures, and modern transformer-based 

language models. The primary objective was to design an effective and robust model capable of 

accurately identifying emotional states at the sentence level across multiple categories. To achieve 

this, a complete pipeline was developed that included preprocessing, feature engineering, classical tf–

idf modeling, embedding-based lstm learning, a novel hybrid ensemble approach, and fine-tuning of 

the bert transformer model. 
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Experimental results demonstrated that the proposed hybrid ensemble—combining random forest, 

adaboost, and gradient boosting through soft voting—achieved the highest overall performance, 

with an accuracy of 94.6% and a macro-f1 score of 93.16%. This confirms that the ensemble 

successfully integrates the complementary strengths of bagging and boosting methods, enabling it to 

capture complex emotional patterns and subtle variations in short text. The fine-tuned bert model, 

which leverages deep contextual embeddings, also delivered strong performance with an accuracy of 

89.8%, confirming the effectiveness of transformer-based architectures for semantic understanding. 

The lstm model achieved an accuracy of 85.63%, outperforming the classical tf–idf random forest 

model but remaining below transformer and ensemble approaches. 

The results fully align with the research objectives established in the study: 

• Fine-grained emotion detection was successfully achieved using multiple modeling 

strategies. 

• A detailed comparative analysis revealed the strengths and weaknesses of each approach. 

• Optimal feature engineering and model design were explored through tf–idf, embeddings, 

and contextual transformers. 

• The hybrid ensemble emerged as the most effective model, outperforming all baselines. 

• The final system demonstrated applicability across diverse text domains, including customer 

feedback, social media posts, psychological analysis, and human–computer interaction. 

Overall, the findings underscore the importance of combining classical and modern machine learning 

techniques to achieve high-precision emotion classification. The extensive evaluation confirms that 

hybrid learning architectures offer a powerful and reliable solution for real-world emotion detection 

applications. 
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