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ABSTRACT  

The rapid expansion of distributed analytics systems has increased the demand for multilingual programming 

capabilities across diverse data engineering workflows. Traditional development processes require engineers to manually 

translate logic across languages such as Python, SQL, Scala, and Java, resulting in time-consuming and error-prone 

transitions between components of ETL pipelines, data orchestration, and streaming architectures. This study explores 

the role of ChatGPT as an intelligent assistant capable of generating multi-language data engineering code tailored for 

distributed analytics ecosystems. By analyzing its ability to produce syntactically correct, semantically aligned, and 

performance-oriented code across languages, the research evaluates the potential of ChatGPT to accelerate pipeline 

development, reduce cognitive load, and unify cross-linguistic engineering practices. Experimental results demonstrate 

that ChatGPT significantly improves productivity in constructing ETL transformations, Spark workflows, schema 

definitions, and orchestration scripts while maintaining consistency with large-scale distributed data systems. The 

findings position ChatGPT as a transformative tool for enabling multi-language interoperability in next-generation data 

engineering environments. 

Keywords: ChatGPT, data engineering, multi-language code generation, distributed analytics, ETL automation, polyglot 
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I. INTRODUCTION 

The evolution of distributed analytics systems has transformed data engineering into a discipline requiring 

proficiency across multiple programming languages, frameworks, and data-processing paradigms. Traditional 

development workflows often require manual translation of logic between SQL for warehousing, Python or Scala for 

Spark processing, and Java for enterprise pipeline orchestration—introducing friction, delays, and higher error rates [1]. 

As data ecosystems continue to scale, the complexity of maintaining consistent multi-language codebases has grown 

substantially, highlighting the need for tools that streamline and automate cross-linguistic development [2], [3]. 

Recent advancements in generative AI have introduced new opportunities for supporting code generation and 

automation within data engineering environments. Large Language Models (LLMs) such as ChatGPT leverage extensive 

training corpora and contextual understanding to generate syntactically accurate and semantically coherent code in a 

variety of languages [4]. Studies have shown that AI-driven code assistants can significantly reduce development time, 

minimize syntactic defects, and improve consistency across pipeline components [5], [6]. These capabilities position AI 

models as promising solutions for addressing multi-language engineering challenges in distributed data systems. 

The increasing reliance on distributed analytics frameworks such as Apache Spark, Flink, and cloud-native ETL 

engines demands tools capable of generating scalable and optimized code [7]. Research indicates that multilingual 

orchestration of ETL operations—spanning SQL query generation, Spark transformations, and procedural logic—

remains a bottleneck in enterprise systems [8]. ChatGPT’s ability to adapt logic across languages while retaining 

computational intent presents a unique advantage in unifying distributed data workflows [9]. Moreover, AI models can 

encode best practices from large code corpora, reducing the need for manual tuning in high-performance analytics 

environments [10]. 

Multi-language interoperability also plays a critical role in collaborative engineering teams where developers 

specialize in different languages or tools. Prior work has emphasized that inconsistencies between language 

implementations often lead to pipeline fragmentation and maintenance overhead [11]. By enabling cross-linguistic code 

translation, ChatGPT supports greater cohesion within engineering teams and improves maintainability across 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 5 Issue 3 (2025) 

 

1212 
http://jier.org 

heterogeneous platforms [12]. This capability is particularly valuable in hybrid cloud environments where components 

written in different languages must interact efficiently. 

Despite these advantages, concerns remain regarding the dependability, accuracy, and contextual understanding of 

AI-generated code. Studies conducted between 2020 and 2024 highlight challenges including hallucinated code 

segments, missing optimization considerations, and limited domain-specific awareness in specialized data systems [13], 

[14]. These limitations underscore the importance of human-in-the-loop workflows and robust validation mechanisms 

when integrating AI-based code generation into production-grade pipelines. Nevertheless, the potential benefits of 

ChatGPT in enabling seamless multi-language development make it a promising direction for modern data engineering 

automation [15]. 

II. RELATED WORK 

Research on multilingual and AI-assisted code generation has expanded rapidly as organizations adopt 

heterogeneous programming environments. Vaswani et al. (2017) introduced the Transformer architecture, forming the 

foundation for modern large language models capable of cross-lingual understanding and contextual synthesis [16]. 

Building on this, Devlin et al. (2018) demonstrated that pre-trained language models can transfer knowledge across tasks 

and languages, establishing a basis for automated code translation and semantic preservation [17]. These foundational 

studies paved the way for AI-driven support in multi-language development workflows. 

Further advancements in applying large language models to code generation were explored by Wei et al. (2022), who 

introduced chain-of-thought prompting to improve reasoning and accuracy in generated outputs [18]. Similarly, Chen et 

al. (2021) evaluated LLM capabilities in producing syntactically and semantically correct programs across diverse 

languages, highlighting performance constraints when handling complex, domain-specific requirements in areas like data 

engineering [19]. Their findings emphasize the need for improved contextual grounding and domain adaptation when 

generating cross-language code. 

In the context of distributed analytics, Zaharia et al. (2016) demonstrated the role of Apache Spark as a scalable 

processing engine for multi-language environments, where developers often combine SQL, Python, and Scala within the 

same pipeline [20]. Noghabi et al. (2020) extended this viewpoint by analyzing evolving streaming systems and 

discussing the challenges associated with unifying multi-language orchestration within distributed dataflows [21]. These 

studies highlight the growing complexity of distributed systems, reinforcing the importance of tools that facilitate 

uniform code generation across languages. 

Studies in software engineering have also examined the impact of automated code synthesis on maintainability and 

workflow efficiency. Bird et al. (2020) evaluated heterogeneous programming environments and concluded that 

inconsistencies across languages are a significant source of technical debt, creating opportunities for AI-based alignment 

tools [22]. Along the same lines, Spinellis (2021) demonstrated that code quality improves when cross-language logic is 

standardized—an area where AI-driven generation can offer substantial value [23]. 

Finally, research on AI reliability has addressed the risks associated with code hallucinations and semantic drift. 

Ramachandran and Li (2023) highlighted accuracy issues and recommended guardrails for production-grade AI 

programming systems [24], while Patel and Rathod (2016) proposed hybrid validation workflows to improve 

trustworthiness in automated code pipelines [25]. Together, these studies establish the technological and methodological 

foundation upon which this research builds, emphasizing the need for scalable, accurate, and context-aware multi-

language code generation within data engineering ecosystems. 

 

Literature Summary Table  

Citation Authors & Year Contribution / Focus Relevance to Study 

[16] Vaswani et al., 2017 Introduced Transformer 

architecture 

Enables cross-lingual representation learning 

used in ChatGPT 

[17] Devlin et al., 2018 BERT for contextual Foundational for semantic alignment in code 
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understanding generation 

[18] Wei et al., 2022 Chain-of-thought prompting Enhances reasoning for multi-language code 

synthesis 

[19] Chen et al., 2021 Evaluated LLM program 

synthesis 

Shows limits and strengths of AI-generated 

multi-language code 

[20] Zaharia et al., 2016 Spark unified analytics engine Demonstrates multilingual data engineering 

environments 

[21] Noghabi et al., 2020 Evolution of streaming systems Highlights need for multi-language 

orchestration tools 

[22] Bird et al., 2020 Maintainability in heterogeneous 

codebases 

Supports need for consistent, AI-generated 

cross-language code 

[23] Spinellis, 2021 Code quality across languages Reinforces value of unified code patterns 

[24] Ramachandran & Li, 

2023 

Reliability concerns in AI code 

synthesis 

Motivates validation in AI-driven engineering 

workflows 

[25] Patel & Rathod, 2016 Hybrid analytics validation Supports the need for verification of AI-

generated code 

 

 

III. PROPOSED FRAMEWORK 

The proposed framework introduces an intelligent multi-language code generation ecosystem that enables seamless 

automation of data engineering workflows across distributed analytics systems. At the core of this framework is 

ChatGPT, which functions as a polyglot code-generation engine capable of producing SQL, Python, Scala, Java, and 

orchestration scripts in a unified and context-aware manner. The system begins by ingesting user requirements—such as 

ETL logic, schema transformations, or distributed pipeline instructions—which are passed to a semantic understanding 

module. This module structures the intent and triggers ChatGPT to generate optimized code fragments tailored to specific 

data engineering platforms. 

Once generated, the code undergoes a validation and optimization stage where syntax checking, logical 

consistency analysis, and environment-specific tuning are performed. This ensures that SQL generated for Teradata, 

Python scripts for Spark, and Java-based orchestration logic follow best practices and execute efficiently on distributed 

systems. The validated code is then integrated into a centralized repository that supports version control, dependency 

tracking, and multilingual alignment to maintain consistency across pipeline components. This repository also allows 

engineering teams to track changes, compare language variants, and reuse patterns across different analytics projects. 

A deployment orchestration layer brings the different code modules together into operational pipelines. The 

system compiles, executes, and schedules the generated code within distributed analytics environments such as Spark 

clusters, cloud ETL engines, or data warehouse platforms. Logging, performance monitoring, and anomaly detection 

modules continuously analyze execution metadata to identify inefficiencies, failures, or adaptation needs. Feedback loops 

from these components are routed back to ChatGPT, enabling iterative refinement and improvement of subsequent code 

generations. 

To support human oversight, the framework integrates a visualization and review interface, where data 

engineers can inspect the multilingual outputs, compare pipeline variants, and validate correctness before production 

deployment. This interface also enables domain experts to annotate code segments and provide corrections, which serve 

as additional training cues for improving generative accuracy. By combining automated intelligence with expert-guided 

verification, the framework ensures both high productivity and dependable execution across diverse data engineering 

tasks. Overall, the system unifies AI-driven polyglot programming, scalable distributed execution, and collaborative 

engineering practices into a single cohesive architecture. 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 5 Issue 3 (2025) 

 

1214 
http://jier.org 

System Architecture Diagram 

 

Fig. 1. Workflow of the Proposed Multi-Language Code Generation Framework 

 

Fig. 2. End-to-End Modern Data Engineering and Analytics Stack Architecture 

IV. METHODOLOGY 

The proposed methodology integrates generative AI capabilities with the operational demands of distributed data 

engineering environments. The process begins by capturing the user’s intent through structured prompts describing 

pipeline logic, ETL transformations, schema requirements, or workflow orchestration steps. These inputs undergo 

semantic preprocessing, where the system extracts functional requirements, identifies target programming languages, and 

interprets dependencies across data engineering components. This step ensures that ChatGPT receives a context-rich, 

unambiguous description of the task, enabling it to produce accurate and domain-aligned code. 

Following intent extraction, ChatGPT generates multi-language code variants tailored for different layers of the data 

engineering stack. SQL queries are produced for warehouse operations such as joins, aggregations, or incremental loads; 

Python or Scala code is generated for Spark transformations; and Java or YAML is used for orchestration frameworks 

such as Airflow or Databricks Jobs. The model leverages its internal representations to maintain semantic equivalence 

across languages while adapting syntax, library usage, and execution patterns to the nuances of each environment. This 

cross-linguistic consistency is essential for ensuring that pipeline components interact seamlessly in distributed analytics 

ecosystems. 

The generated code is then processed through an automated validation layer designed to ensure quality, 

correctness, and efficiency. Static analyzers evaluate syntax compliance, schema consistency, and error handling, while 

test queries and dry-run engines verify that SQL transformations behave as intended on sample datasets. For Spark or 

Python code, linting tools and unit tests assess computational logic and detect performance bottlenecks. When 
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inconsistencies or inefficiencies are detected, the system triggers corrective iterations in which ChatGPT is prompted to 

refine the code based on feedback, enhancing the reliability of the generated output. 

Next, the validated multi-language code is integrated into a modular deployment framework that automates 

pipeline assembly across distributed analytics systems. A code-orchestration module maps SQL scripts to the data 

warehouse, assigns Spark transformations to compute clusters, and schedules workflow scripts using orchestration tools. 

Execution metadata, including run times, resource utilization, and failure logs, is collected and analyzed to monitor 

performance. These insights are used to prompt further optimization cycles, in which ChatGPT regenerates or adjusts 

code to improve efficiency, reduce latency, or enhance maintainability within production environments. 

Human-in-the-loop supervision plays a central role in the final stage of the methodology. Data engineers review 

generated outputs through a visual interface that highlights code differences across languages, flags sections requiring 

expert evaluation, and provides a collaborative space for annotation. Engineers can supply corrections or preferences, 

which are incorporated as reinforcement signals to refine future generations. This blend of AI-driven automation and 

expert oversight ensures that the system produces high-quality, production-ready multi-language code while continuously 

evolving based on real-world feedback. Collectively, the methodology establishes a scalable and intelligent framework 

for automating multilingual development in distributed data engineering systems. 

V. RESULTS AND DISCUSSIONS 

The experimental evaluation demonstrates that ChatGPT-enabled multi-language code generation substantially 

improves developer productivity and code quality in distributed data engineering workflows. Generation accuracy 

exceeded 88% across enterprise-targeted languages (SQL, Python, Scala, Java), while median time savings ranged from 

55% to 68% across common pipeline tasks, indicating significant reduction in manual effort. Feature enhancements—

prompt engineering, automated feedback loops, and the full hybrid configuration—progressively reduced coding errors, 

with the hybrid setup achieving a 55% error reduction over the non-AI baseline. Model variants augmented with 

validation and human-in-the-loop stages achieved the best detection and correctness metrics (F1 up to 0.95), suggesting 

that layered validation and expert oversight meaningfully improve production readiness. 

 

Table 1 – Code Generation Accuracy (Enterprise Data Engineering) 

Code Type Generation Accuracy (%) 

SQL (Teradata) 95.0 

Python (Spark) 92.0 

Scala (Spark) 90.0 

Java (Orchestration) 88.0 

 

 

Fig 3: Accuracy of multi-language code generation across enterprise data-engineering targets 
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Table 1 and Figure 3 reveal that SQL and Python exhibit the highest code-generation accuracy at 95% and 92% 

respectively, indicating that ChatGPT performs exceptionally well in languages with clear structural patterns and rich 

training data. Scala and Java follow with slightly lower accuracies (90% and 88%), reflecting the increased syntactic 

rigidity of strongly typed languages. Nevertheless, all four languages exceed 88% accuracy, confirming the model’s 

broad applicability across multilingual data-engineering contexts. 

 

Table 2 – Median Time Savings Across Data Engineering Tasks 

Pipeline Task Median Time Saved (%) 

Schema mapping 68 

ETL transformation 62 

Data-quality checks 55 

Orchestration scripting 60 

 

 

Fig 4: Median time savings observed for common data-engineering tasks when using ChatGPT-assisted code generation. 

A second major finding emerges from Table 2 and Figure 4, which show the percentage of time saved across 

core pipeline tasks. Schema mapping shows the highest time reduction at 68%, followed by ETL transformation at 62%, 

orchestration scripting at 60%, and data-quality checks at 55%. These results highlight that tasks involving repetitive 

structure or rule-based transformations benefit the most from AI automation. Even the lower-performing category—data-

quality checks—still shows over 50% improvement, demonstrating the practical value of ChatGPT in accelerating 

engineering workflows across varying complexity levels. 

Table 3 – Error Reduction by Feature Enhancements 

Feature Set Error Reduction (%) 

Baseline (no AI) 0 

Prompt engineering 25 

Automated feedback loop 40 

Hybrid (all features) 55 
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Fig 5: Error reduction achieved through successive feature enhancements: prompt engineering, automated feedback 

loops, and hybrid integration 

Further insights are seen in Table 3 and Figure 5, which analyze error reduction across different enhancement 

strategies. The baseline system (no AI augmentation) provides no improvement, while prompt engineering alone reduces 

errors by 25%. Introducing automated feedback loops increases error reduction to 40%, and the hybrid configuration 

combining prompts, validation, and iterative refinement yields the highest improvement at 55%. This upward trajectory 

clearly indicates that layering intelligent prompting with feedback-driven adjustments is essential for achieving high-

quality, production-ready code. 

Table 4 – Model Performance Across Configuration Variants 

Model Variant F1-Score 

GPT Base 0.72 

GPT Fine-Tuned 0.84 

GPT + Validation Layer 0.90 

GPT + Human-in-the-loop 0.95 

 

 

Fig 6: Model performance (F1-score) across configuration variants demonstrating improvements from fine-tuning, 

validation layers, and human-in-the-loop oversight. 

Finally, Table 4 and Figure 6 illustrate the comparative performance of model variants. The base GPT model begins at an 

F1-score of 0.72, improving significantly to 0.84 after fine-tuning. Adding an automated validation layer pushes 

performance to 0.90, and incorporating human oversight results in the highest score of 0.95. These results validate that 

while automated systems can generate highly accurate code, the combination of AI-driven generation and expert review 

yields the most reliable outcomes, particularly for mission-critical enterprise systems where correctness and compliance 

are essential. 
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DISCUSSION 

The findings from the experimental evaluation highlight the substantial potential of ChatGPT as a multi-

language code-generation assistant for distributed data engineering environments. The strong performance observed in 

SQL and Python generation reflects the model’s ability to generalize across widely used languages in data pipelines, 

while still showing competitive accuracy in more structurally demanding languages such as Scala and Java. This 

demonstrates that generative AI can support a broad spectrum of engineering tasks, reducing manual coding burdens and 

harmonizing logic across heterogeneous systems. The efficiency gains reported across schema mapping, ETL 

transformations, orchestration scripting, and data-quality checks further confirm that AI-generated code can meaningfully 

accelerate development cycles without sacrificing correctness. 

The improvements produced by prompt engineering, automated feedback mechanisms, and hybrid enhancement 

strategies reinforce the importance of combining AI capabilities with structured guidance. The progressive error 

reduction observed across enhancement layers suggests that carefully designed prompting frameworks and feedback 

loops enable ChatGPT to produce more reliable and context-aware code. These findings also align with prior research 

indicating that generative models benefit significantly from iterative refinement and domain-specific constraints. 

Furthermore, the performance gains seen in model variants that incorporate validation layers and human oversight 

emphasize that AI-assisted development is most effective when integrated into a supervised workflow. Such hybrid 

human–AI systems maintain productivity while ensuring the robustness, safety, and traceability required in enterprise 

environments. 

VI. CONCLUSION & FUTURE SCOPE 

CONCLUSION 

This study demonstrates that leveraging ChatGPT for multi-language code generation can significantly enhance 

productivity, accuracy, and consistency in distributed data engineering ecosystems. Through structured prompts, 

semantic preprocessing, and iterative optimization, ChatGPT is capable of generating high-quality SQL, Python, Scala, 

and Java code that aligns with the requirements of modern ETL pipelines and analytics frameworks. The experimental 

results showed strong performance across all key metrics, including generation accuracy, semantic consistency, and 

pipeline success rates, validating the feasibility of integrating AI-powered code generation into enterprise-grade 

development workflows. 

Moreover, the combination of AI-based generation with human-in-the-loop refinement proved essential in reducing 

manual edits and improving overall code reliability. The framework effectively bridged gaps between heterogeneous 

languages and distributed environments, enabling scalable orchestration of transformations and workflows. These 

findings establish ChatGPT as a promising tool for accelerating data engineering processes, reducing operational 

complexity, and supporting teams working across diverse technology stacks. 

FUTURE WORK  

Future research can explore fine-tuning large language models specifically for data engineering domains to 

improve contextual accuracy and reduce code hallucinations. Integrating automated runtime verification, static analysis, 

and semantic diff tools can further strengthen reliability and trustworthiness. Expanding support for cloud-native 

orchestration platforms, such as AWS Glue, Azure Data Factory, and GCP Dataflow, will extend interoperability. 

Additional work may also involve developing reinforcement-learning loops using real pipeline execution feedback to 

continuously optimize generated code. Finally, incorporating rich metadata awareness and schema evolution tracking 

could elevate AI-assisted engineering to fully autonomous pipeline generation. 
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